Our aim is to compare the radiation dose associated with a low-dose CT colonography (CTC) protocol for colorectal cancer screening with that delivered by double-contrast barium enema (DCBE). CTC of twenty asymptomatic individuals (M:F = 10:10) participating to a colorectal cancer screening program and DCBE of fifteen patients (M:F = 6:9) were evaluated. For CTC, absorbed dose was determined by calculating the dose-length product for each CTC examination from measurements on a CT dose phantom equipped with a CT ion chamber. For DCBE, the free-in-air Kerma at the patient’s X-ray entry surface and the Kerma-area product during fluoroscopy and fluorography were measured with a Barracuda system, with fluoroscopy times being recorded blinded to the performing operator. Effective dose at CTC was 2.17 ± 0.12 mSv, with good and excellent image quality in 14/20 (70%) and 6/20 cases (30%), respectively. With DCBE, effective patient dose was 4.12 ± 0.17 mSv, 1.9 times greater than CTC (P < 0.0001). Our results show that effective dose from screening CTC is substantially lower than that from DCBE, suggesting that CTC is the radiological imaging technique of the large bowel with the lowest risk of stochastic radiation effects.

RADIATION DOSE IN SCREENING PATIENTS: CTC VS DOUBLE-CONTRAST BARIUM ENEMA

NERI, EMANUELE;
2009-01-01

Abstract

Our aim is to compare the radiation dose associated with a low-dose CT colonography (CTC) protocol for colorectal cancer screening with that delivered by double-contrast barium enema (DCBE). CTC of twenty asymptomatic individuals (M:F = 10:10) participating to a colorectal cancer screening program and DCBE of fifteen patients (M:F = 6:9) were evaluated. For CTC, absorbed dose was determined by calculating the dose-length product for each CTC examination from measurements on a CT dose phantom equipped with a CT ion chamber. For DCBE, the free-in-air Kerma at the patient’s X-ray entry surface and the Kerma-area product during fluoroscopy and fluorography were measured with a Barracuda system, with fluoroscopy times being recorded blinded to the performing operator. Effective dose at CTC was 2.17 ± 0.12 mSv, with good and excellent image quality in 14/20 (70%) and 6/20 cases (30%), respectively. With DCBE, effective patient dose was 4.12 ± 0.17 mSv, 1.9 times greater than CTC (P < 0.0001). Our results show that effective dose from screening CTC is substantially lower than that from DCBE, suggesting that CTC is the radiological imaging technique of the large bowel with the lowest risk of stochastic radiation effects.
2009
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/130409
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact