Heat transfer from a platinum wire 0.2 mm. in dia., heated by Joule effect, to an impinging upward flow submerged slot jet of distilled water is studied in two phase conditions. A new experimental apparatus is built for this experimental activity. Different geometrical configurations were investigated in order to find out which of them could maximize the heat transfer coefficient. Its dependence on some parameters as jet velocity, heat flux and distance between exit jet and wire is also examined. In the future the results of this paper will be compared with the previous ones presented in literature, referred to cylinders of one size order bigger than the platinum wire and the same slot, all parameters being equal.

“Forced convection between a wire and an upward flow slot submerged jet: preliminary results”

BARTOLI, CARLO
2009-01-01

Abstract

Heat transfer from a platinum wire 0.2 mm. in dia., heated by Joule effect, to an impinging upward flow submerged slot jet of distilled water is studied in two phase conditions. A new experimental apparatus is built for this experimental activity. Different geometrical configurations were investigated in order to find out which of them could maximize the heat transfer coefficient. Its dependence on some parameters as jet velocity, heat flux and distance between exit jet and wire is also examined. In the future the results of this paper will be compared with the previous ones presented in literature, referred to cylinders of one size order bigger than the platinum wire and the same slot, all parameters being equal.
2009
9780791838518
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/130556
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact