Asteroids, since the formation of the solar system, are known to have experienced catastrophic collisions, which---depending on the impact energy---can produce a major disruption of the parent body and possibly give birth to asteroid families or binaries [1]. We present a general study of the final shape and dynamical state of asteroids produced by the re-accumulation process following a catastrophic disruption. Starting from a cloud of massive particles (mono-disperse spheres) with given density and velocity distributions, we analyse the final shape, spin state, and angular momentum of the system from numerical integration of a N-body gravitational system (code pkdgrav [2]). The re-accumulation process itself is relatively fast, with a dynamical time corresponding to the spin-period of the final body (several hours). The final global shapes---which are described as tri-axial ellipsoids---exhibit slopes consistent with a degree of shear stress sustained by interlocking particles. We point out a few results: -the final shapes are close to those of hydrostatic equilibrium for incompressible fluids, preferably Maclaurin spheroid rather than Jacobi ellipsoids -for bodies closest to the sequence of hydrostatic equilibrium, there is a direct relation between spin, density and outer shape, suggesting that the outer surface is nearly equipotential -the evolution of the shape during the process follows a track along a gradient of potential energy, without necessarily reaching its minimum -the loose random packing of the particles implies low friction angle and hence fluid-like behaviour, which extends the results of [3]. Future steps of our analysis will include feature refinements of the model initial conditions and re-accumulation process, including impact shakings, realistic velocity distributions, and non equal-sized elementary spheres. References [1] Michel P. et al. 2001. Science 294, 1696 [2] Leinhardt Z.M. et al. 2000. Icarus 146, 133 [3] Richardson D.C. et al. 2005. Icarus 173, 349

Re-accumulation Scenarios Governing Final Global Shapes of Rubble-Pile Asteroids

PAOLICCHI, PAOLO;
2009-01-01

Abstract

Asteroids, since the formation of the solar system, are known to have experienced catastrophic collisions, which---depending on the impact energy---can produce a major disruption of the parent body and possibly give birth to asteroid families or binaries [1]. We present a general study of the final shape and dynamical state of asteroids produced by the re-accumulation process following a catastrophic disruption. Starting from a cloud of massive particles (mono-disperse spheres) with given density and velocity distributions, we analyse the final shape, spin state, and angular momentum of the system from numerical integration of a N-body gravitational system (code pkdgrav [2]). The re-accumulation process itself is relatively fast, with a dynamical time corresponding to the spin-period of the final body (several hours). The final global shapes---which are described as tri-axial ellipsoids---exhibit slopes consistent with a degree of shear stress sustained by interlocking particles. We point out a few results: -the final shapes are close to those of hydrostatic equilibrium for incompressible fluids, preferably Maclaurin spheroid rather than Jacobi ellipsoids -for bodies closest to the sequence of hydrostatic equilibrium, there is a direct relation between spin, density and outer shape, suggesting that the outer surface is nearly equipotential -the evolution of the shape during the process follows a track along a gradient of potential energy, without necessarily reaching its minimum -the loose random packing of the particles implies low friction angle and hence fluid-like behaviour, which extends the results of [3]. Future steps of our analysis will include feature refinements of the model initial conditions and re-accumulation process, including impact shakings, realistic velocity distributions, and non equal-sized elementary spheres. References [1] Michel P. et al. 2001. Science 294, 1696 [2] Leinhardt Z.M. et al. 2000. Icarus 146, 133 [3] Richardson D.C. et al. 2005. Icarus 173, 349
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/131749
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact