Melt electrospinning is one aspect of electrospinning with relatively little published literature, although the technique avoids solvent accumulation and/or toxicity which is favoured in certain applications In the study reported, we melt-electrospun blends of poly(epsilon-caprolactone) (PCL) and an amphiphilic diblock copolymer consisting of poly(ethylene glycol) and PCL segments (PEG-block PCL) A custom-made electrospinning apparatus was built and various combinations of instrument parameters such as voltage and polymer feeding rate were investigated Pure PEG-block-PCL copolymer melt electrospinning did not result in consistent and uniform fibres due to the low molecular weight, while blends of PCL and PEG-block-PCL, for some parameter combinations and certain weight ratios of the two components, were able to produce continuous fibres significantly thinner (average diameter of ca 2 mu m) compared to pure PCL The PCL fibres obtained had average diameters ranging from 6 to 33 mu m and meshes were uniform for the lowest voltage employed while mesh uniformity decreased when the voltage was increased This approach shows that PCL and blends of PEG block-PCL and PCL can be readily processed by melt electrospinning to obtain fibrous meshes with varied average diameters and morphologies that are of interest for tissue engineering purposes

Melt electrospinning of polycaprolactone and its blends with poly(ethylene glycol)

CHIELLINI, FEDERICA;CHIELLINI, EMO;
2010-01-01

Abstract

Melt electrospinning is one aspect of electrospinning with relatively little published literature, although the technique avoids solvent accumulation and/or toxicity which is favoured in certain applications In the study reported, we melt-electrospun blends of poly(epsilon-caprolactone) (PCL) and an amphiphilic diblock copolymer consisting of poly(ethylene glycol) and PCL segments (PEG-block PCL) A custom-made electrospinning apparatus was built and various combinations of instrument parameters such as voltage and polymer feeding rate were investigated Pure PEG-block-PCL copolymer melt electrospinning did not result in consistent and uniform fibres due to the low molecular weight, while blends of PCL and PEG-block-PCL, for some parameter combinations and certain weight ratios of the two components, were able to produce continuous fibres significantly thinner (average diameter of ca 2 mu m) compared to pure PCL The PCL fibres obtained had average diameters ranging from 6 to 33 mu m and meshes were uniform for the lowest voltage employed while mesh uniformity decreased when the voltage was increased This approach shows that PCL and blends of PEG block-PCL and PCL can be readily processed by melt electrospinning to obtain fibrous meshes with varied average diameters and morphologies that are of interest for tissue engineering purposes
2010
Detta, N; BROWN T., D; EDIN F., K; Albrecht, K; Chiellini, Federica; Chiellini, Emo; DALTON P., D; Hutmacher, D. W.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/141436
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 92
  • ???jsp.display-item.citation.isi??? 74
social impact