Poly(lactic-co-glycolic acid) (PLGA) meshes loaded with retinoic acid (RA) were prepared by applying the electrospinning technique. The purpose of the present work was to combine the biological effects of RA and the advantages of electrospun meshes to enhancing the mass transfer features of controlled release systems and cell interaction with polymeric scaffolds. The processing conditions for the fabrication of three-dimensional meshes were optimized by studying their influence on mesh morphology. Tensile testing showed that RA loading influenced the meshes mechanical properties by increasing their strength and rigidity. Moreover, the drug release and degradation profiles of the electrospun systems were compared to analogous RA-loaded PLGA films prepared by solvent casting. The results of this study highlight that the electrospun meshes preserved their fibrous structure after 4 months under in vitro physiological conditions and showed a sustained controlled release of the loaded agent in comparison to that observed for cast films. The bioactivity of the loaded RA was investigated on murine preosteoblasts cells by evaluating its influence on cell proliferation and morphology.

Poly(lactic-co-glycolic acid) electrospun fibrous meshes for the controlled release of retinoic acid

PUPPI, DARIO;PIRAS, ANNA MARIA;DINUCCI, DINUCCIO;CHIELLINI, FEDERICA
2010-01-01

Abstract

Poly(lactic-co-glycolic acid) (PLGA) meshes loaded with retinoic acid (RA) were prepared by applying the electrospinning technique. The purpose of the present work was to combine the biological effects of RA and the advantages of electrospun meshes to enhancing the mass transfer features of controlled release systems and cell interaction with polymeric scaffolds. The processing conditions for the fabrication of three-dimensional meshes were optimized by studying their influence on mesh morphology. Tensile testing showed that RA loading influenced the meshes mechanical properties by increasing their strength and rigidity. Moreover, the drug release and degradation profiles of the electrospun systems were compared to analogous RA-loaded PLGA films prepared by solvent casting. The results of this study highlight that the electrospun meshes preserved their fibrous structure after 4 months under in vitro physiological conditions and showed a sustained controlled release of the loaded agent in comparison to that observed for cast films. The bioactivity of the loaded RA was investigated on murine preosteoblasts cells by evaluating its influence on cell proliferation and morphology.
2010
Puppi, Dario; Piras, ANNA MARIA; Nicola, Detta; Dinucci, Dinuccio; Chiellini, Federica
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/141800
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 99
  • ???jsp.display-item.citation.isi??? 85
social impact