Maximally parallel semantics have been proposed for many formalisms as an alternative to the standard interleaving semantics for some modelling scenarios. Nevertheless, in the probabilistic setting an affirmed interpretation of maximal parallelism still lacks. We define a synchronous maximally parallel probabilistic semantics for multiset rewriting tailored to describe, simulate and verify biological systems evolving with maximally parallel steps. Each step of the proposed semantics is parallel as each reaction can happen multiple times, and it is maximal as it leaves no enabled reaction i.e. as many reactions as possible are executed. We define a maximally parallel probabilistic semantics in terms of Discrete Time Markov Chain for systems described by stochastic multiset rewriting. We propose a simple, maximally parallel, model of Caenorhabditis elegans vulval development on which we show probabilistic simulations results.

Parallel Probabilistic Semantics for Multiset Rewriting

BARBUTI, ROBERTO;LEVI, FRANCESCA;MILAZZO, PAOLO;
2011-01-01

Abstract

Maximally parallel semantics have been proposed for many formalisms as an alternative to the standard interleaving semantics for some modelling scenarios. Nevertheless, in the probabilistic setting an affirmed interpretation of maximal parallelism still lacks. We define a synchronous maximally parallel probabilistic semantics for multiset rewriting tailored to describe, simulate and verify biological systems evolving with maximally parallel steps. Each step of the proposed semantics is parallel as each reaction can happen multiple times, and it is maximal as it leaves no enabled reaction i.e. as many reactions as possible are executed. We define a maximally parallel probabilistic semantics in terms of Discrete Time Markov Chain for systems described by stochastic multiset rewriting. We propose a simple, maximally parallel, model of Caenorhabditis elegans vulval development on which we show probabilistic simulations results.
2011
Barbuti, Roberto; Levi, Francesca; Milazzo, Paolo; Scatena, G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/145086
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact