Surgical simulation requires to have an operating scenario as similar as possible to the real conditions that the surgeon is going to face. Not only visual and geometric patient properties are needed to be reproduced, but also physical and biomechanical properties are theoretically required. In this paper a physically based patient specific simulator for solid organs is described, recalling the underlying theory and providing simulation results and comparisons. The main biomechanical parameters (Young's modulus and density) have been integrated in a Mass-Spring-Damper model (MSDm) based on a tetrahedral structured network. The proposed algorithms allow the automatic setting of node mass and spring stiffness, while the damping coefficient have been modeled using the Rayleigh approach. Moreover, the method automatically detects the organ external layer, allowing the usage of both the surface and internal Young's moduli: for the capsule (or stroma) and for the internal part (or parenchyma). Finally the model can be manually tuned to represent lesions with specific biomechanical properties. The method has beed tested with various material samples. The results have shown a good visual realism ensuring the performance required by an interactive simulation.

Integration of biomechanical parameters in tetrahedral mass-spring models for virtual surgery simulation

FERRARI, MAURO;MOSCA, FRANCO;FERRARI, VINCENZO
2011-01-01

Abstract

Surgical simulation requires to have an operating scenario as similar as possible to the real conditions that the surgeon is going to face. Not only visual and geometric patient properties are needed to be reproduced, but also physical and biomechanical properties are theoretically required. In this paper a physically based patient specific simulator for solid organs is described, recalling the underlying theory and providing simulation results and comparisons. The main biomechanical parameters (Young's modulus and density) have been integrated in a Mass-Spring-Damper model (MSDm) based on a tetrahedral structured network. The proposed algorithms allow the automatic setting of node mass and spring stiffness, while the damping coefficient have been modeled using the Rayleigh approach. Moreover, the method automatically detects the organ external layer, allowing the usage of both the surface and internal Young's moduli: for the capsule (or stroma) and for the internal part (or parenchyma). Finally the model can be manually tuned to represent lesions with specific biomechanical properties. The method has beed tested with various material samples. The results have shown a good visual realism ensuring the performance required by an interactive simulation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/146117
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact