The development of NMR techniques applied in the last 10 years to partially oriented systems, and in particular to liquid crystals (LCs), is the object of this brief perspective. The evolution of NMR methods (i.e., new NMR pulse sequences) and the improvement of both theoretical models and mathematic tools for the analysis of NMR data (specifically, for partially ordered systems) allowed scientists to extend their research to increasingly complex materials, such as dendrimers, polymers, and membranes, and to investigate unique phenomena, such as field-induced alignment and confining effects. Furthermore, the fast development of nanoscience and biomedicine is offering a rich variety of new “physical chemical” problems related to partially ordered materials. Starting from a brief perspective of recent works on thermotropic and lyotropic LCs based on different NMR methods, new challenges in this field will be drawn. Moreover, recent selected research works will be discussed in detail with particular emphasis on: (i) the effect of high magnetic fields on the supramolecular structure of chiral liquid-crystalline phases, such as the SmC*, TGBA*, and “de Vries”-type SmA* phases, by means of solid-state 2H NMR; (ii) the slow dynamics in the isotropic phase of bent-core LCs (BLCs) and of liquid single-crystal elastomers evidenced by 2H NMR relaxation studies; and (iii) the influence of the LC environment on the conformational properties of rod-like mesogens studied by high-resolution solid-state 13C NMR methods. This work aims to offer an occasion of reflection on this field of physical chemistry with a glance at future trends and challenges in view of the celebration of the International Year of Chemistry, 2011. *Pure Appl. Chem. 83, 1–252 (2011). A collection of invited, peer-reviewed articles by former winners of the IUPAC Prize for Young Chemists, in celebration of the International Year of Chemistry 2011.

The role of NMR in the study of partially ordered materials: Perspectives and challenges

DOMENICI, VALENTINA
2011-01-01

Abstract

The development of NMR techniques applied in the last 10 years to partially oriented systems, and in particular to liquid crystals (LCs), is the object of this brief perspective. The evolution of NMR methods (i.e., new NMR pulse sequences) and the improvement of both theoretical models and mathematic tools for the analysis of NMR data (specifically, for partially ordered systems) allowed scientists to extend their research to increasingly complex materials, such as dendrimers, polymers, and membranes, and to investigate unique phenomena, such as field-induced alignment and confining effects. Furthermore, the fast development of nanoscience and biomedicine is offering a rich variety of new “physical chemical” problems related to partially ordered materials. Starting from a brief perspective of recent works on thermotropic and lyotropic LCs based on different NMR methods, new challenges in this field will be drawn. Moreover, recent selected research works will be discussed in detail with particular emphasis on: (i) the effect of high magnetic fields on the supramolecular structure of chiral liquid-crystalline phases, such as the SmC*, TGBA*, and “de Vries”-type SmA* phases, by means of solid-state 2H NMR; (ii) the slow dynamics in the isotropic phase of bent-core LCs (BLCs) and of liquid single-crystal elastomers evidenced by 2H NMR relaxation studies; and (iii) the influence of the LC environment on the conformational properties of rod-like mesogens studied by high-resolution solid-state 13C NMR methods. This work aims to offer an occasion of reflection on this field of physical chemistry with a glance at future trends and challenges in view of the celebration of the International Year of Chemistry, 2011. *Pure Appl. Chem. 83, 1–252 (2011). A collection of invited, peer-reviewed articles by former winners of the IUPAC Prize for Young Chemists, in celebration of the International Year of Chemistry 2011.
2011
Domenici, Valentina
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/149287
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact