We present a new model of self-consistent coupling between low frequency, ion-scale coherent structures with high frequency whistler waves in order to interpret Cluster data. The idea relies on the possibility of trapping whistler waves by inhomogeneous external fields where they can be spatially confined and propagate for times much longer than their characteristic electronic time scale. Here we take the example of a slow magnetosonic soliton acting as a wave guide in analogy with the ducting properties of an inhomogeneous plasma. The soliton is characterized by a magnetic dip and density hump that traps and advects high frequency waves over many ion times. The model represents a new possible way of explaining space measurements often detecting the presence of whistler waves in correspondence to magnetic depressions and density humps. This approach, here given by means of slow solitons, but more general than that, is alternative to the standard approach of considering whistler wave packets as associated with non propagating magnetic holes resulting from a mirror-type instability

Coupling Between WhistlerWaves and Ion-Scale SolitaryWaves: Cluster Measurements in the Magnetotail During a Substorm

CALIFANO, FRANCESCO;PEGORARO, FRANCESCO;
2012-01-01

Abstract

We present a new model of self-consistent coupling between low frequency, ion-scale coherent structures with high frequency whistler waves in order to interpret Cluster data. The idea relies on the possibility of trapping whistler waves by inhomogeneous external fields where they can be spatially confined and propagate for times much longer than their characteristic electronic time scale. Here we take the example of a slow magnetosonic soliton acting as a wave guide in analogy with the ducting properties of an inhomogeneous plasma. The soliton is characterized by a magnetic dip and density hump that traps and advects high frequency waves over many ion times. The model represents a new possible way of explaining space measurements often detecting the presence of whistler waves in correspondence to magnetic depressions and density humps. This approach, here given by means of slow solitons, but more general than that, is alternative to the standard approach of considering whistler wave packets as associated with non propagating magnetic holes resulting from a mirror-type instability
2012
Tenerani, A; Le Contel, O; Califano, Francesco; Pegoraro, Francesco; Robert, P; Cornilleau Wehrlin, N; Sauvaud, J.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/152057
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact