Cell morphology and its interaction with the extracellular environment are integrated processes involving a number of intracellular controllers orchestrating cytoskeletal proteins and their interaction with the cell membrane and anchorage proteins. Sex steroids are effective regulators of cell morphology and tissue organisation, and recent evidence indicates that this is obtained through the regulation of the actin cytoskeleton. Intriguingly, many of these regulatory actions related to cell morphology are achieved through the rapid, nonclassical signalling of sex steroid receptors to kinase cascades, independently from nuclear alteration of gene expression or protein synthesis. The identification of the mechanistic basis for these rapid actions on cell cytoskeleton has special relevance for the characterisation of the effects of sex steroids under physiological conditions, such as for the development of neurone/neurone interconnections and dendritic spine density. This is considered to be critical for gender-specific differences in brain function and dysfunction. Recent advancements in the characterisation of the molecular basis of the extranuclear signalling of sex steroids help to clarify the role of oestrogen and progesterone in the brain, and may turn out to be of relevance for clinical purposes. This review highlights the regulatory effects of oestrogens and progesterone on actin cytoskeleton and neurone morphology, as well as recent progresses in the characterisation of these mechanisms, providing insights and working hypotheses on possible clinical applications for the modulation of these pathways in the central nervous system.

Actin Cytoskeleton Remodelling by Sex Steroids in Neurones

SANCHEZ, ANGEL MATIAS;FLAMINI, MARINA INES;POLAK, KINGA;palla, giulia;MANNELLA, PAOLO;SIMONCINI, TOMMASO
2012-01-01

Abstract

Cell morphology and its interaction with the extracellular environment are integrated processes involving a number of intracellular controllers orchestrating cytoskeletal proteins and their interaction with the cell membrane and anchorage proteins. Sex steroids are effective regulators of cell morphology and tissue organisation, and recent evidence indicates that this is obtained through the regulation of the actin cytoskeleton. Intriguingly, many of these regulatory actions related to cell morphology are achieved through the rapid, nonclassical signalling of sex steroid receptors to kinase cascades, independently from nuclear alteration of gene expression or protein synthesis. The identification of the mechanistic basis for these rapid actions on cell cytoskeleton has special relevance for the characterisation of the effects of sex steroids under physiological conditions, such as for the development of neurone/neurone interconnections and dendritic spine density. This is considered to be critical for gender-specific differences in brain function and dysfunction. Recent advancements in the characterisation of the molecular basis of the extranuclear signalling of sex steroids help to clarify the role of oestrogen and progesterone in the brain, and may turn out to be of relevance for clinical purposes. This review highlights the regulatory effects of oestrogens and progesterone on actin cytoskeleton and neurone morphology, as well as recent progresses in the characterisation of these mechanisms, providing insights and working hypotheses on possible clinical applications for the modulation of these pathways in the central nervous system.
2012
Sanchez, ANGEL MATIAS; Flamini, MARINA INES; Polak, Kinga; Palla, Giulia; Spina, S.; Mannella, Paolo; Genazzani, A. D.; Simoncini, Tommaso
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/155653
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 23
social impact