The self-aggregation and gelation of an amphiphilic peptide (C17H35CONH-A(4)G(3)ERGD, peptide amphiphile) were studied by light scattering, viscometry, nuclear magnetic resonance diffusometry, and atomic force microscopy. The peptide amphiphile critical aggregation concentration was evaluated to be 16 and 60 mu M by light scattering and viscometry, respectively. The observed difference was attributed to the larger sensitivity of the latter technique to the presence of long fibrils. The addition of one equivalent or more of divalent cations (Ca2+ and Mg2+) to peptide amphiphile formed dense incoherent hydrogels. Based on the atomic force microscopy and nanoindentation data, both the hydrogel morphology and stiffness were independent of the cation type and peptide amphiphile concentration. However, gel stiffness increased on increasing Ca2+/peptide amphiphile molar ratio while a parallel decrease in the apparent water diffusion rate was observed by nuclear magnetic resonance diffusometry. The dispersions of endothelial progenitor cells in the peptide amphiphile hydrogels were evaluated in vivo on a rat tissue hypoxia model. Significant capillary formation at the injection site was observed by tissue appearance and histological examination, which indicated endothelial progenitor cell/peptide amphiphile hydrogel-enhanced angiogenesis in ischemic tissue.

Chemical-physical and in vivo evaluations of a self-assembling amphiphilic peptide as an injectable hydrogel scaffold for biomedical applications

BARSOTTI, MARIA CHIARA;CIFELLI, MARIO;DI STEFANO, ROSSELLA;GHEZZI, LISA;TINE', MARIA ROSARIA
2013-01-01

Abstract

The self-aggregation and gelation of an amphiphilic peptide (C17H35CONH-A(4)G(3)ERGD, peptide amphiphile) were studied by light scattering, viscometry, nuclear magnetic resonance diffusometry, and atomic force microscopy. The peptide amphiphile critical aggregation concentration was evaluated to be 16 and 60 mu M by light scattering and viscometry, respectively. The observed difference was attributed to the larger sensitivity of the latter technique to the presence of long fibrils. The addition of one equivalent or more of divalent cations (Ca2+ and Mg2+) to peptide amphiphile formed dense incoherent hydrogels. Based on the atomic force microscopy and nanoindentation data, both the hydrogel morphology and stiffness were independent of the cation type and peptide amphiphile concentration. However, gel stiffness increased on increasing Ca2+/peptide amphiphile molar ratio while a parallel decrease in the apparent water diffusion rate was observed by nuclear magnetic resonance diffusometry. The dispersions of endothelial progenitor cells in the peptide amphiphile hydrogels were evaluated in vivo on a rat tissue hypoxia model. Significant capillary formation at the injection site was observed by tissue appearance and histological examination, which indicated endothelial progenitor cell/peptide amphiphile hydrogel-enhanced angiogenesis in ischemic tissue.
2013
Solaro, R; M., Alderighi; Barsotti, MARIA CHIARA; A., Battisti; Cifelli, Mario; P., Losi; DI STEFANO, Rossella; Ghezzi, Lisa; Tine', MARIA ROSARIA
File in questo prodotto:
File Dimensione Formato  
JBioactCompatPolym_2013_3.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/158798
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact