Diabetes mellitus is the major risk factor for cardiovascular disorders. Aldose reductase, the rate-limiting enzyme of the polyol pathway, plays a key role in the pathogenesis of diabetic complications. Accordingly, inhibition of this enzyme is emerging as a major therapeutic strategy for the treatment of hyperglycemia-induced cardiovascular pathologies. In this study, we describe a series of 5(6)-substituted benzofuroxane derivatives, 5a-k,m, synthesized as aldose reductase inhibitors. Besides inhibiting efficiently the target enzyme, 5a-k,m showed additional NO donor and antioxidant properties, thus emerging as novel multi-effective compounds. The benzyloxy derivative 5a, the most promising of the whole series, showed a well-balanced, multifunctional profile consisting of submicromolar ALR2 inhibitory efficacy (IC50 = 0.99 ± 0.02 μM), significant and spontaneous NO generation properties, and excellent hydroxyl radical scavenging activity. Computational studies of the novel compounds clarified the aldose reductase inhibitory profile observed, thus rationalizing structure-activity relationships of the whole series.

Benzofuroxane Derivatives as Multi Effective Agents for the Treatment of Cardiovascular Diabetic Complications. Synthesis, Functional Evaluation, and Molecular Modeling Studies

BARRESI, ELISABETTA;SIMORINI, FRANCESCA;TALIANI, SABRINA;SALERNO, SILVIA;MARINI, ANNA MARIA;DA SETTIMO PASSETTI, FEDERICO;LA MOTTA, CONCETTINA
2012-01-01

Abstract

Diabetes mellitus is the major risk factor for cardiovascular disorders. Aldose reductase, the rate-limiting enzyme of the polyol pathway, plays a key role in the pathogenesis of diabetic complications. Accordingly, inhibition of this enzyme is emerging as a major therapeutic strategy for the treatment of hyperglycemia-induced cardiovascular pathologies. In this study, we describe a series of 5(6)-substituted benzofuroxane derivatives, 5a-k,m, synthesized as aldose reductase inhibitors. Besides inhibiting efficiently the target enzyme, 5a-k,m showed additional NO donor and antioxidant properties, thus emerging as novel multi-effective compounds. The benzyloxy derivative 5a, the most promising of the whole series, showed a well-balanced, multifunctional profile consisting of submicromolar ALR2 inhibitory efficacy (IC50 = 0.99 ± 0.02 μM), significant and spontaneous NO generation properties, and excellent hydroxyl radical scavenging activity. Computational studies of the novel compounds clarified the aldose reductase inhibitory profile observed, thus rationalizing structure-activity relationships of the whole series.
2012
Sartini, Stefania; Cosconati, Sandro; Marinelli, Luciana; Barresi, Elisabetta; Di Maro, Salvatore; Simorini, Francesca; Taliani, Sabrina; Salerno, Silvia; Marini, ANNA MARIA; DA SETTIMO PASSETTI, Federico; Novellino, Ettore; LA MOTTA, Concettina
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/159323
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact