This paper presents experimental design approach to process parameter optimization for CW Nd/YAG laser welding of ferritic/austenitic stainless steels in a constrained fillet configuration. To determine the optimal welding parameters, response surface methodology was used to develop a set of mathematical models relating the welding parameters to each of the weld characteristics. The quality criteria considered to determine the optimal settings were the maximization of weld resistance length and shearing force, and the minimization of weld radial penetration. Laser power, welding speed, and incident angle are the factors that affect the weld bead characteristics significantly. A rapid decrease in weld shape factor and increase in shearing force with the line energy input in the range of 15-17 kJ/m depicts the establishment of a keyhole regime. A focused beam with laser power and welding speed respectively in the range of 860-875 W and 3.4-4.0 m/min and an incident angle of around 12° were identified as the optimal set of laser welding parameters to obtain stronger and better welds.

Multi-response Optimization of Laser Welding of Stainless Steels in a Constrained Fillet Joint Configuration Using RSM

ROMOLI, LUCA;DINI, GINO;
2012-01-01

Abstract

This paper presents experimental design approach to process parameter optimization for CW Nd/YAG laser welding of ferritic/austenitic stainless steels in a constrained fillet configuration. To determine the optimal welding parameters, response surface methodology was used to develop a set of mathematical models relating the welding parameters to each of the weld characteristics. The quality criteria considered to determine the optimal settings were the maximization of weld resistance length and shearing force, and the minimization of weld radial penetration. Laser power, welding speed, and incident angle are the factors that affect the weld bead characteristics significantly. A rapid decrease in weld shape factor and increase in shearing force with the line energy input in the range of 15-17 kJ/m depicts the establishment of a keyhole regime. A focused beam with laser power and welding speed respectively in the range of 860-875 W and 3.4-4.0 m/min and an incident angle of around 12° were identified as the optimal set of laser welding parameters to obtain stronger and better welds.
2012
Khan, M. M. A.; Romoli, Luca; Fiaschi, M.; Dini, Gino; Sarri, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/159690
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 27
social impact