We study dynamical flavor symmetry breaking in the context of a class of N = 1 supersymmetric SU(n(c)) and USp(2n(c)) gauge theories, constructed from the exactly solvable N = 2 theories by perturbing them with small adjoint and generic bare hypermultiplet (quark) masses. We find that the flavor U(n(f)) symmetry in SU(n(c)) theories is dynamically broken to U(r) x U(n(f) - r) groups for n(f) less than or equal to n(c). In the r = 1 case the dynamical symmetry breaking is caused by the condensation of monopoles in the n(f) representation. For general r, however, the monopoles in the <(n(f)C(r))under bar> representation, whose condensation could explain the flavor symmetry breaking but would produce too-many Nambu-Goldstone multiplets, actually "break up" into "magnetic quarks" which condense and induce confinement and the symmetry breaking. In USp(2n(c)) theories with n(f) less than or equal to n(c) + 1, the flavor SO(2n(f)) symmetry is dynamically broken to U(n(f)), but with no description in terms of a weakly coupled local field theory. In both SU(n(c)) and USp(2n(c)) theories, with larger numbers of quark flavors, besides the vacua with these properties, there exist also vacua with no flavor symmetry breaking.

Dynamics of supersymmetric SU(n(c)) and USp(2n(c)) gauge theories RID A-4286-2011

KONISHI, KENICHI;
2000-01-01

Abstract

We study dynamical flavor symmetry breaking in the context of a class of N = 1 supersymmetric SU(n(c)) and USp(2n(c)) gauge theories, constructed from the exactly solvable N = 2 theories by perturbing them with small adjoint and generic bare hypermultiplet (quark) masses. We find that the flavor U(n(f)) symmetry in SU(n(c)) theories is dynamically broken to U(r) x U(n(f) - r) groups for n(f) less than or equal to n(c). In the r = 1 case the dynamical symmetry breaking is caused by the condensation of monopoles in the n(f) representation. For general r, however, the monopoles in the <(n(f)C(r))under bar> representation, whose condensation could explain the flavor symmetry breaking but would produce too-many Nambu-Goldstone multiplets, actually "break up" into "magnetic quarks" which condense and induce confinement and the symmetry breaking. In USp(2n(c)) theories with n(f) less than or equal to n(c) + 1, the flavor SO(2n(f)) symmetry is dynamically broken to U(n(f)), but with no description in terms of a weakly coupled local field theory. In both SU(n(c)) and USp(2n(c)) theories, with larger numbers of quark flavors, besides the vacua with these properties, there exist also vacua with no flavor symmetry breaking.
2000
Carlino, G; Konishi, Kenichi; Murayama, H.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/160805
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 38
social impact