Elastic properties of a thermal barrier ceramic coating composed of an NiCoCrAIY bond coat and a ZrO2(Y2O3) top coat were measured by a four-point bending rig in the temperature range 20°C-900°C. Different types of specimens (i.e., with bond coat only or with bond coat and top coat, on one side or on both sides) were employed. Test procedures were based on the theory discussed in Part 1 to enhance accuracy and to estimate confidence intervals. In particular, the method employed at high temperature was calibrated at room temperature by comparing the results with those obtained by methods with low sensitivity to layer thicknesses. For the bond coat, Young's modulus was found to be temperature independent up to about 500°C; a decreasing trend was observed above this temperature. For the top coat, a slightly decreasing Young's modulus was observed over the whole temperature range examined. A possible explanation is given on the basis of phase transformation and the microstructure of the two layers. At room temperature, Poisson's ratio for the bond coat was found to be near 0.3, whereas a near zero value was measured for the top coat.

Measurement of coating’s elastic properties by mechanical methods. Part II: application to thermal barrier coatings

BEGHINI, MARCO;BERTINI, LEONARDO;FRENDO, FRANCESCO
2001-01-01

Abstract

Elastic properties of a thermal barrier ceramic coating composed of an NiCoCrAIY bond coat and a ZrO2(Y2O3) top coat were measured by a four-point bending rig in the temperature range 20°C-900°C. Different types of specimens (i.e., with bond coat only or with bond coat and top coat, on one side or on both sides) were employed. Test procedures were based on the theory discussed in Part 1 to enhance accuracy and to estimate confidence intervals. In particular, the method employed at high temperature was calibrated at room temperature by comparing the results with those obtained by methods with low sensitivity to layer thicknesses. For the bond coat, Young's modulus was found to be temperature independent up to about 500°C; a decreasing trend was observed above this temperature. For the top coat, a slightly decreasing Young's modulus was observed over the whole temperature range examined. A possible explanation is given on the basis of phase transformation and the microstructure of the two layers. At room temperature, Poisson's ratio for the bond coat was found to be near 0.3, whereas a near zero value was measured for the top coat.
2001
Beghini, Marco; Benamati, G.; Bertini, Leonardo; Frendo, Francesco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/177519
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 28
social impact