Polymer nanocomposite films with unusual and anisotropic optical properties were obtained by the controlled in-situ generation of noble metal nanoparticles (NPs). Poly(vinyl alcohol) (PVA) and poly(ethylene-co-vinylalcohol) (EVAl) nanocomposites containing gold and silver NPs were efficiently produced by a photo- reduction or thermal process both operating directly in the solid state and resulted efficiently stabilized by the presence of polymer hydroxyl groups, which prevent particles agglomeration. Uniaxial drawing of the NPs/polymer composites promoted anisotropic packing of the embedded particles along the stretching direction of the film, resulting in a shift of the surface plasmon resonance well above 40 nm and thus producing a well-defined polarization-dependent colour change. Such nanostructured materials when are obtained in the form of thin films can be applied to several fields, from sensor to photonics (i.e., macromolecular strain sensor, linear absorbing polarizer).

Preparation and Optical Properties of New Metal/Macromolecule Architectures

CIARDELLI, FRANCESCO;PUCCI, ANDREA;RUGGERI, GIACOMO
2008-01-01

Abstract

Polymer nanocomposite films with unusual and anisotropic optical properties were obtained by the controlled in-situ generation of noble metal nanoparticles (NPs). Poly(vinyl alcohol) (PVA) and poly(ethylene-co-vinylalcohol) (EVAl) nanocomposites containing gold and silver NPs were efficiently produced by a photo- reduction or thermal process both operating directly in the solid state and resulted efficiently stabilized by the presence of polymer hydroxyl groups, which prevent particles agglomeration. Uniaxial drawing of the NPs/polymer composites promoted anisotropic packing of the embedded particles along the stretching direction of the film, resulting in a shift of the surface plasmon resonance well above 40 nm and thus producing a well-defined polarization-dependent colour change. Such nanostructured materials when are obtained in the form of thin films can be applied to several fields, from sensor to photonics (i.e., macromolecular strain sensor, linear absorbing polarizer).
2008
Bernabò, M; Ciardelli, Francesco; Pucci, Andrea; Ruggeri, Giacomo
File in questo prodotto:
File Dimensione Formato  
83/80293646350097975486155418075965563534

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 400.89 kB
Formato Unknown
400.89 kB Unknown   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/179462
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact