Cell-penetrating peptides are able to transport covalently attached cargoes such as peptide or polypeptide fragments of endogenous proteins across cell membranes. Taking advantage of the cell-penetrating properties of the 16-residue fragment penetratin, we synthesized a chimeric peptide that possesses an N-terminal sequence with membrane-penetrating activity and a C-terminal sequence corresponding to the last 21 residues of G alpha(s). This G alpha(s) peptide was an effective inhibitor of 5'-N-ethylcarboxamidoadenosine ( NECA) and isoproterenol-stimulated production of cAMP in rat PC12 and human microvascular endothelial (HMEC-1) cells, whereas the carrier peptide had no effect. The maximal efficacy of NECA was substantially reduced when PC12 cells were treated with the chimeric peptide, suggesting that it competes with G alpha(s) for interaction with receptors. The peptide inhibited neither G(q)(-) nor G(i)-coupled receptor signaling. The use of a carboxy-fluorescein derivative of the peptide proved its ability to cross the plasma membrane of live cells. NMR analysis of the chimeric peptide structure in a membrane-mimicking environment showed that the G alpha(s) fragment assumed an amphipathic alpha-helical conformation tailored to make contact with key residues on the intracellular side of the receptor. The N-terminal penetratin portion of the molecule also showed an alpha-helical structure, but hydrophobic and hydrophilic residues formed clustered surfaces at the N terminus and center of the fragment, suggesting their involvement in the mechanism of penetratin internalization by endocytosis. Our biological data supported by NMR analysis indicate that the membrane-permeable G alpha(s) peptide is a valuable, nontoxic research tool to modulate G(s)-coupled receptor signal transduction in cell culture models.

A membrane-permeable peptide containing the last 21 residues of the G alpha(S) carboxyl terminus inhibits G(S)-coupled receptor signaling in intact cells: Correlations between peptide structure and biological activity

GIUSTI, LAURA;GARGINI, MARIA CLAUDIA;LUCACCHINI, ANTONIO;MAZZONI, MARIA ROSA
2006-01-01

Abstract

Cell-penetrating peptides are able to transport covalently attached cargoes such as peptide or polypeptide fragments of endogenous proteins across cell membranes. Taking advantage of the cell-penetrating properties of the 16-residue fragment penetratin, we synthesized a chimeric peptide that possesses an N-terminal sequence with membrane-penetrating activity and a C-terminal sequence corresponding to the last 21 residues of G alpha(s). This G alpha(s) peptide was an effective inhibitor of 5'-N-ethylcarboxamidoadenosine ( NECA) and isoproterenol-stimulated production of cAMP in rat PC12 and human microvascular endothelial (HMEC-1) cells, whereas the carrier peptide had no effect. The maximal efficacy of NECA was substantially reduced when PC12 cells were treated with the chimeric peptide, suggesting that it competes with G alpha(s) for interaction with receptors. The peptide inhibited neither G(q)(-) nor G(i)-coupled receptor signaling. The use of a carboxy-fluorescein derivative of the peptide proved its ability to cross the plasma membrane of live cells. NMR analysis of the chimeric peptide structure in a membrane-mimicking environment showed that the G alpha(s) fragment assumed an amphipathic alpha-helical conformation tailored to make contact with key residues on the intracellular side of the receptor. The N-terminal penetratin portion of the molecule also showed an alpha-helical structure, but hydrophobic and hydrophilic residues formed clustered surfaces at the N terminus and center of the fragment, suggesting their involvement in the mechanism of penetratin internalization by endocytosis. Our biological data supported by NMR analysis indicate that the membrane-permeable G alpha(s) peptide is a valuable, nontoxic research tool to modulate G(s)-coupled receptor signal transduction in cell culture models.
2006
D'Ursi, Am; Giusti, Laura; Albrizio, S; Porchia, F; Esposito, C; Caliendo, G; Gargini, MARIA CLAUDIA; Novellino, E; Lucacchini, Antonio; Rovero, P; Mazzoni, MARIA ROSA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/181930
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 12
social impact