We introduce an analytical method to investigate radiation trapping problems with Doppler frequency redistribution. The problem is formulated within the framework of the Holstein-Biberman-Payne equation. We interpret the basic integro-differential trapping equation as a generalized wave equation for a four-dimensional (4D) classical system (an associated quasiparticle). We then construct its analytical solution by a semiclassical approach, called the geometrical quantization technique (GQT). Within the GQT, it is shown that the spatial and frequency variables can be separated and that the frequency part of the excited atom distribution function obeys a stationary Schrodinger equation for a perturbed oscillator. We demonstrate that there is a noticeable deviation of the actual spectral emission profile from the Doppler line in the region of small opacities. The problem of calculating the spatial mode structure and the effective radiation trapping factors is reduced to the evaluation of wave functions and quantized energy values of the quasiparticle confined in the vapor cell. We formulate the quantization rules and derive the phase factors, which allow us to obtain analytically the complete spectrum of the trapping factors in 1D geometries (layer, cylinder, sphere) and other (2D and 3D) geometries when the separation of space variables is possible. Finally, we outline a possible extension of our method to treat radiation trapping effects for more general experimental situations including, for instance, a system of cold atoms.

Solution of the Holstein equation of radiation trapping by the geometrical quantization technique. III. Partial frequency redistribution with Doppler broadening

FUSO, FRANCESCO;ALLEGRINI, MARIA
2001-01-01

Abstract

We introduce an analytical method to investigate radiation trapping problems with Doppler frequency redistribution. The problem is formulated within the framework of the Holstein-Biberman-Payne equation. We interpret the basic integro-differential trapping equation as a generalized wave equation for a four-dimensional (4D) classical system (an associated quasiparticle). We then construct its analytical solution by a semiclassical approach, called the geometrical quantization technique (GQT). Within the GQT, it is shown that the spatial and frequency variables can be separated and that the frequency part of the excited atom distribution function obeys a stationary Schrodinger equation for a perturbed oscillator. We demonstrate that there is a noticeable deviation of the actual spectral emission profile from the Doppler line in the region of small opacities. The problem of calculating the spatial mode structure and the effective radiation trapping factors is reduced to the evaluation of wave functions and quantized energy values of the quasiparticle confined in the vapor cell. We formulate the quantization rules and derive the phase factors, which allow us to obtain analytically the complete spectrum of the trapping factors in 1D geometries (layer, cylinder, sphere) and other (2D and 3D) geometries when the separation of space variables is possible. Finally, we outline a possible extension of our method to treat radiation trapping effects for more general experimental situations including, for instance, a system of cold atoms.
2001
Bezuglov, Nn; Kazansky, Ak; Fuso, Francesco; Allegrini, Maria
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/187144
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 9
social impact