We identified a new form of activity-dependent modulation of the afterhyperpolarization (AHP) in tactile (T) sensory neurons of the leech Hirudo medicinalis. Repetitive intracellular stimulation with 30 trains of depolarizing impulses at 15-s inter-stimulus interval (ISI) led to an increase of the AHP amplitude (60% of the control). The enhancement of AHP lasted for 15 min. The AHP increase was also elicited when a T neuron was activated by repetitive stimulation of its receptive field. The ISI was a critical parameter for the induction and maintenance of AHP enhancement. ISI duration had to fit within a time window with the upper limit of 20 s to make the training effective to induce an enhancement of the AHP amplitude. After recovery from potentiation, AHP amplitude could be enhanced once again by delivering another training session. The increase of AHP amplitude persisted in high Mg2 saline, suggesting an intrinsic cellular mechanism for its induction. Previous investigations reported that AHP of leech T neurons was mainly due to the activity of the Na/K ATPase and to a Ca2-dependent K current (IK/Ca). In addition, it has been demonstrated that serotonin (5HT) reduces AHP amplitude through the inhibition of the Na/K ATPase. By blocking the IK/Ca with pharmacological agents, such as cadmium and apamin, we still observed an increase of the AHP amplitude after repetitive stimulation, whereas 5HT application completely inhibited the AHP increment. These data indicate that the Na/K ATPase is involved in the induction and maintenance of the AHP increase after repetitive stimulation. Moreover, the AHP increase was affected by the level of serotonin in the CNS. Finally, the increase of the AHP amplitude produced a lasting depression of the synaptic connection between two T neurons, suggesting that this activity-dependent phenomenon might be involved in short-term plasticity associated with learning processes.

Activity-dependent increase of the AHP amplitude in T sensory neurons of the leech

SCURI, ROSSANA;BRUNELLI, MARCELLO
2002-01-01

Abstract

We identified a new form of activity-dependent modulation of the afterhyperpolarization (AHP) in tactile (T) sensory neurons of the leech Hirudo medicinalis. Repetitive intracellular stimulation with 30 trains of depolarizing impulses at 15-s inter-stimulus interval (ISI) led to an increase of the AHP amplitude (60% of the control). The enhancement of AHP lasted for 15 min. The AHP increase was also elicited when a T neuron was activated by repetitive stimulation of its receptive field. The ISI was a critical parameter for the induction and maintenance of AHP enhancement. ISI duration had to fit within a time window with the upper limit of 20 s to make the training effective to induce an enhancement of the AHP amplitude. After recovery from potentiation, AHP amplitude could be enhanced once again by delivering another training session. The increase of AHP amplitude persisted in high Mg2 saline, suggesting an intrinsic cellular mechanism for its induction. Previous investigations reported that AHP of leech T neurons was mainly due to the activity of the Na/K ATPase and to a Ca2-dependent K current (IK/Ca). In addition, it has been demonstrated that serotonin (5HT) reduces AHP amplitude through the inhibition of the Na/K ATPase. By blocking the IK/Ca with pharmacological agents, such as cadmium and apamin, we still observed an increase of the AHP amplitude after repetitive stimulation, whereas 5HT application completely inhibited the AHP increment. These data indicate that the Na/K ATPase is involved in the induction and maintenance of the AHP increase after repetitive stimulation. Moreover, the AHP increase was affected by the level of serotonin in the CNS. Finally, the increase of the AHP amplitude produced a lasting depression of the synaptic connection between two T neurons, suggesting that this activity-dependent phenomenon might be involved in short-term plasticity associated with learning processes.
2002
Scuri, Rossana; R., Mozzachiodi; Brunelli, Marcello
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/188140
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact