Several IP cells are available in the market to implement 8051-compliant microcontroller in embedded systems. Yet they frequently lack features that have become a key point in such systems, like power optimization. This paper aims at lowering the power consumption of an 8051 IP core while keeping unaltered performances, through Register Transfer Level techniques such as clustered clock gating, operand isolation and state encoding. This approach preserves the IP high-reusability and technology independence, as it only consists of modifications to the source VHDL code. A total power reduction of about 40% is achieved, with limited area overhead.

Power optimization of an 8051-compliant IP microcontroller

FANUCCI, LUCA;SAPONARA, SERGIO;
2005-01-01

Abstract

Several IP cells are available in the market to implement 8051-compliant microcontroller in embedded systems. Yet they frequently lack features that have become a key point in such systems, like power optimization. This paper aims at lowering the power consumption of an 8051 IP core while keeping unaltered performances, through Register Transfer Level techniques such as clustered clock gating, operand isolation and state encoding. This approach preserves the IP high-reusability and technology independence, as it only consists of modifications to the source VHDL code. A total power reduction of about 40% is achieved, with limited area overhead.
2005
Fanucci, Luca; Saponara, Sergio; Morello, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/188191
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 26
social impact