Full field optical techniques can be reliably used for 3D measurements of complex shapes by multi-view processes, which require the computation of transformation parameters relating different views into a common reference system. Although, several multi-view approaches have been proposed, the alignment process is still the crucial step of a shape reconstruction. In this paper, a methodology to automatically align 3D views has been developed by integrating a stereo vision system and a full field optical scanner. In particular, the stereo vision system is used to remotely track the optical scanner within a working volume. The tracking system uses stereo images to detect the 3D coordinates of retro-reflective infrared markers rigidly connected to the scanner. Stereo correspondences are established by a robust methodology based on combining the epipolar geometry with an image spatial transformation constraint. The proposed methodology has been validated by experimental tests regarding both the evaluation of the measurement accuracy and the 3D reconstruction of an industrial shape.

Shape measurement by a multi-view methodology based on the remote tracking of a 3D optical scanner

BARONE, SANDRO;PAOLI, ALESSANDRO;RAZIONALE, ARMANDO VIVIANO
2012-01-01

Abstract

Full field optical techniques can be reliably used for 3D measurements of complex shapes by multi-view processes, which require the computation of transformation parameters relating different views into a common reference system. Although, several multi-view approaches have been proposed, the alignment process is still the crucial step of a shape reconstruction. In this paper, a methodology to automatically align 3D views has been developed by integrating a stereo vision system and a full field optical scanner. In particular, the stereo vision system is used to remotely track the optical scanner within a working volume. The tracking system uses stereo images to detect the 3D coordinates of retro-reflective infrared markers rigidly connected to the scanner. Stereo correspondences are established by a robust methodology based on combining the epipolar geometry with an image spatial transformation constraint. The proposed methodology has been validated by experimental tests regarding both the evaluation of the measurement accuracy and the 3D reconstruction of an industrial shape.
2012
Barone, Sandro; Paoli, Alessandro; Razionale, ARMANDO VIVIANO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/188407
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 32
social impact