Context. The last decade showed an impressive observational effort from the photometric and spectroscopic point of view for ancient stellar clusters in our Galaxy and beyond, leading to important and sometimes surprising results. Aims. The theoretical interpretation of these new observational results requires updated evolutionary models and isochrones spanning a wide range of chemical composition so that the possibility of multipopulations inside a stellar cluster is also taken also into account. Methods. With this aim we built the new "Pisa Stellar Evolution Database" of stellar models and isochrones by adopting a well-tested evolutionary code (FRANEC) implemented with updated physical and chemical inputs. In particular, our code adopts realistic atmosphere models and an updated equation of state, nuclear reaction rates and opacities calculated with recent solar elements mixture. Results. A total of 32 646 models have been computed in the range of initial masses 0.30 / 1.10 M-circle dot for a grid of 216 chemical compositions with the fractional metal abundance in mass, Z, ranging from 0.0001 to 0.01, and the original helium content, Y, from 0.25 to 0.42. Models were computed for both solar-scaled and alpha-enhanced abundances with different external convection efficiencies. Correspondingly, 9720 isochrones were computed in the age range 8/15 Gyr, in time steps of 0.5 Gyr. The whole database is available to the scientific community on the web. Models and isochrones were compared with recent calculations available in the literature and with the color-magnitude diagram of selected Galactic globular clusters. The dependence of relevant evolutionary quantities, namely turn-off and horizontal branch luminosities, on the chemical composition and convection efficiency were analyzed in a quantitative statistical way and analytical formulations were made available for reader's convenience. These relations can be useful in several fields of stellar evolution, e.g. evolutionary properties of binary systems, synthetic models for simple stellar populations and for star counts in galaxies, and chemical evolution models of galaxies.

The Pisa Stellar Evolution Data Base for low-mass stars

VALLE, GIADA;DEGL'INNOCENTI, SCILLA;PRADA MORONI, PIER GIORGIO
2012-01-01

Abstract

Context. The last decade showed an impressive observational effort from the photometric and spectroscopic point of view for ancient stellar clusters in our Galaxy and beyond, leading to important and sometimes surprising results. Aims. The theoretical interpretation of these new observational results requires updated evolutionary models and isochrones spanning a wide range of chemical composition so that the possibility of multipopulations inside a stellar cluster is also taken also into account. Methods. With this aim we built the new "Pisa Stellar Evolution Database" of stellar models and isochrones by adopting a well-tested evolutionary code (FRANEC) implemented with updated physical and chemical inputs. In particular, our code adopts realistic atmosphere models and an updated equation of state, nuclear reaction rates and opacities calculated with recent solar elements mixture. Results. A total of 32 646 models have been computed in the range of initial masses 0.30 / 1.10 M-circle dot for a grid of 216 chemical compositions with the fractional metal abundance in mass, Z, ranging from 0.0001 to 0.01, and the original helium content, Y, from 0.25 to 0.42. Models were computed for both solar-scaled and alpha-enhanced abundances with different external convection efficiencies. Correspondingly, 9720 isochrones were computed in the age range 8/15 Gyr, in time steps of 0.5 Gyr. The whole database is available to the scientific community on the web. Models and isochrones were compared with recent calculations available in the literature and with the color-magnitude diagram of selected Galactic globular clusters. The dependence of relevant evolutionary quantities, namely turn-off and horizontal branch luminosities, on the chemical composition and convection efficiency were analyzed in a quantitative statistical way and analytical formulations were made available for reader's convenience. These relations can be useful in several fields of stellar evolution, e.g. evolutionary properties of binary systems, synthetic models for simple stellar populations and for star counts in galaxies, and chemical evolution models of galaxies.
2012
Dell'Omodarme, M; Valle, Giada; Degl'Innocenti, Scilla; PRADA MORONI, PIER GIORGIO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/190591
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 77
  • ???jsp.display-item.citation.isi??? 73
social impact