Pseudomonas spp. isolates from Tuber borchii ascocarps, known to be able to produce phytoregulatory and biocontrol substances in pure culture, were used to perform studies on their possible physiological role in nature. Antimycotic activity was confirmed against fungal contaminants isolated from the ascocarps, suggesting that populations associated with Tuber borchii fruit bodies may play a role in the maintenance of ascocarp health. Fifty- five percent of strains tested were also able to release metabolites which affected T. borchii mycelial growth and morphogenesis in culture. On the contrary, growth of the arbuscular mycorrhizal fungus Glomus mosseae and the ectomycorrhizal fungus Laccaria bicolor, putative competitors of Tuber for mycorrhizal infection sites on roots, was not influenced by the presence of any bacterial strain. The possibility that these bacteria, which show antifungal activity and fungal growth modulation activities, might be incorporated in the developing ascocarp by means of their preferential adhesion to Tuber mycelium is discussed.

Adhesion to hyphal matrix and antifungal activity of Pseudomonas strains isolated from Tuber borchii ascocarps

BEDINI S;GIOVANNETTI, MANUELA;NUTI, MARCO
2000-01-01

Abstract

Pseudomonas spp. isolates from Tuber borchii ascocarps, known to be able to produce phytoregulatory and biocontrol substances in pure culture, were used to perform studies on their possible physiological role in nature. Antimycotic activity was confirmed against fungal contaminants isolated from the ascocarps, suggesting that populations associated with Tuber borchii fruit bodies may play a role in the maintenance of ascocarp health. Fifty- five percent of strains tested were also able to release metabolites which affected T. borchii mycelial growth and morphogenesis in culture. On the contrary, growth of the arbuscular mycorrhizal fungus Glomus mosseae and the ectomycorrhizal fungus Laccaria bicolor, putative competitors of Tuber for mycorrhizal infection sites on roots, was not influenced by the presence of any bacterial strain. The possibility that these bacteria, which show antifungal activity and fungal growth modulation activities, might be incorporated in the developing ascocarp by means of their preferential adhesion to Tuber mycelium is discussed.
2000
Sbrana, C; Bagnoli, G; Bedini, S; Filippi, C; Giovannetti, Manuela; Nuti, Marco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/193169
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 35
social impact