In a previous work we found that the insecticide 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), inhibits the accumulation of cAMP as induced by the bovine thyroid stimulating hormone (bTSH) in cells transfected with the TSH receptor. In this work, we demonstrate that the DDT molecular analogues, diethylstilbestrol and quercetine, are more potent inhibitors of the TSH receptor activity than DDT itself. The notion that all these compounds interfere with nuclear estrogen receptors, as either agonists (DDT and diethylstilbestrol) or antagonists (quercetin), prompted us to test the ability of the steroid hormone 17-beta-estradiol to inhibit the TSH receptor activity. We found that estrogen exposure causes a modest but significant inhibition of the bTSH induced cAMP accumulation both in transfected CHO-TSH receptor and Fischer Rat Thyroid Low Serum 5% (FRTL-5) cells. When applied to CHO cells transfected with the luteinizing hormone receptor, 17-beta-estradiol proved capable of inhibiting the hCG induced cAMP accumulation at a concentration as low as 10 nM, though the effect was not greater than 35%. The effect of 17-beta-estradiol was not estrogen receptors mediated, as co-transfection of the estrogen receptor alpha and beta subunits with LH receptor caused cAMP to increase above the level attained by the sole hCG Stimulation, and not to decrease it as expected. These data suggest the presence of a steroidal-like allosteric binding site on glycoprotein hormone receptors. (C) 2009 Elsevier B.V. All rights reserved.

Presence of a putative steroidal allosteric site on glycoprotein hormone receptors

SIMONCINI, TOMMASO;DI BARI, LORENZO;TONACCHERA, MASSIMO;
2009-01-01

Abstract

In a previous work we found that the insecticide 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), inhibits the accumulation of cAMP as induced by the bovine thyroid stimulating hormone (bTSH) in cells transfected with the TSH receptor. In this work, we demonstrate that the DDT molecular analogues, diethylstilbestrol and quercetine, are more potent inhibitors of the TSH receptor activity than DDT itself. The notion that all these compounds interfere with nuclear estrogen receptors, as either agonists (DDT and diethylstilbestrol) or antagonists (quercetin), prompted us to test the ability of the steroid hormone 17-beta-estradiol to inhibit the TSH receptor activity. We found that estrogen exposure causes a modest but significant inhibition of the bTSH induced cAMP accumulation both in transfected CHO-TSH receptor and Fischer Rat Thyroid Low Serum 5% (FRTL-5) cells. When applied to CHO cells transfected with the luteinizing hormone receptor, 17-beta-estradiol proved capable of inhibiting the hCG induced cAMP accumulation at a concentration as low as 10 nM, though the effect was not greater than 35%. The effect of 17-beta-estradiol was not estrogen receptors mediated, as co-transfection of the estrogen receptor alpha and beta subunits with LH receptor caused cAMP to increase above the level attained by the sole hCG Stimulation, and not to decrease it as expected. These data suggest the presence of a steroidal-like allosteric binding site on glycoprotein hormone receptors. (C) 2009 Elsevier B.V. All rights reserved.
2009
Rossi, M; Dimida, A; Ferrarini, E; Silvano, E; DE MARCO, G; Agretti, P; Aloisi, G; Simoncini, Tommaso; DI BARI, Lorenzo; Tonacchera, Massimo; Giorgi, F; Maggio, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/196150
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 18
social impact