In order to reach deeper insight into the mechanism of diethyldithiocarbamate (DDC)-induced enhancement of MPTP toxicity in mice, MK-801, a non-competitive antagonist of NMDA receptors, has been used as a tool to study the role of excitatory amino acids. In agreement with previous reports, (+)MK-801 did not significantly affect either striatal dopamine (DA) or tyrosine-hydroxylase (TH) activity in MPTP-treated animals. On the contrary (+)MK-801, but not (-)MK-801 significantly reduced the DDC + MPTP-induced fall in striatal DA and TH activity. A similar preventing effect on DA metabolites (DOPAC and HVA) and HVA/DA ratio was observed. The number of TH+ neurons in the substantia nigra (SN) of (+)MK-801-pretreated mice was not significantly different from that of control animals, indicating that this treatment specifically antagonized the extensive DDC-induced lesion of dopaminergic cell bodies in this brain area. (+)MK-801 treatment did not affect the DDC-induced changes of striatal MPP+ levels, suggesting that the observed antagonism of MK-801 against DDC is not due to MPP+ kinetic modifications. Pretreatment with the MAO-B inhibitor, L-deprenyl, or with the DA uptake blocker, GBR 12909, completely prevented the marked DA depletion elicited by DDC + MPTP within the striatum. Both treatments also protected from the fall in DA metabolites and TH activity as well. This indicates that DDC-induced potentiation is dependent upon MPP+ production and its uptake by the dopaminergic nerve terminals. All these findings suggest that NMDA receptors play a crucial role in the DDC-induced enhancement of MPTP toxicity.

(+)MK-801 PREVENTS THE DDC-INDUCED ENHANCEMENT OF MPTP TOXICITY IN MICE

VAGLINI, FRANCESCA;FORNAI, FRANCESCO;CORSINI, GIOVANNI UMBERTO
1994-01-01

Abstract

In order to reach deeper insight into the mechanism of diethyldithiocarbamate (DDC)-induced enhancement of MPTP toxicity in mice, MK-801, a non-competitive antagonist of NMDA receptors, has been used as a tool to study the role of excitatory amino acids. In agreement with previous reports, (+)MK-801 did not significantly affect either striatal dopamine (DA) or tyrosine-hydroxylase (TH) activity in MPTP-treated animals. On the contrary (+)MK-801, but not (-)MK-801 significantly reduced the DDC + MPTP-induced fall in striatal DA and TH activity. A similar preventing effect on DA metabolites (DOPAC and HVA) and HVA/DA ratio was observed. The number of TH+ neurons in the substantia nigra (SN) of (+)MK-801-pretreated mice was not significantly different from that of control animals, indicating that this treatment specifically antagonized the extensive DDC-induced lesion of dopaminergic cell bodies in this brain area. (+)MK-801 treatment did not affect the DDC-induced changes of striatal MPP+ levels, suggesting that the observed antagonism of MK-801 against DDC is not due to MPP+ kinetic modifications. Pretreatment with the MAO-B inhibitor, L-deprenyl, or with the DA uptake blocker, GBR 12909, completely prevented the marked DA depletion elicited by DDC + MPTP within the striatum. Both treatments also protected from the fall in DA metabolites and TH activity as well. This indicates that DDC-induced potentiation is dependent upon MPP+ production and its uptake by the dopaminergic nerve terminals. All these findings suggest that NMDA receptors play a crucial role in the DDC-induced enhancement of MPTP toxicity.
1994
Vaglini, Francesca; Fascetti, F; Fornai, Francesco; Maggio, R; Corsini, GIOVANNI UMBERTO
File in questo prodotto:
File Dimensione Formato  
Vaglini et al. Brain Res 1994.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.22 MB
Formato Adobe PDF
3.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/198356
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact