Most antitumour agents with cytotoxic properties induce apoptosis. The lipophilic compound euplotin C, isolated from the ciliate Euplotes crassus, is toxic to a number of different opportunistic or pathogenic microorganisms, although its mechanism of action is currently unknown. We report here that euplotin C is a powerful cytotoxic and pro-apoptotic agent in mouse AtT-20 and rat PC12 tumour-derived cell lines. In addition, we provide evidence that euplotin C treatment results in rapid activation of ryanodine receptors, depletion of Ca2+ stores in the endoplasmic reticulum (ER), the release of cytochrome cfrom the mitochondria, activation of caspase-12, and activation of caspase-3, leading to apoptosis. Intracellular Ca2+ overload is an early event which induces apoptosis and is parallelled by ER stress and the release of cytochrome c,whereas caspase-12 may be activated by euplotin C at a later stage in the apoptosis pathway. These events, either independently or concomitantly, lead to the activation of the caspase-3 and its downstream effectors, triggering the cell to undergo apoptosis. These results demonstrate that euplotin C may be considered for the design of cytotoxic and pro-apoptotic new drugs.

Cytotoxic effects and apoptotic signalling mechanisms of the sesquiterpenoid euplotin C, a secondary metabolite of the marine ciliate Euplotes crassus, in tumour cells

MARTINI, DAVIDE;GARCIA GIL, MARIA de las MERCEDES;DI GIUSEPPE, GRAZIANO;BAGNOLI, PAOLA
2006-01-01

Abstract

Most antitumour agents with cytotoxic properties induce apoptosis. The lipophilic compound euplotin C, isolated from the ciliate Euplotes crassus, is toxic to a number of different opportunistic or pathogenic microorganisms, although its mechanism of action is currently unknown. We report here that euplotin C is a powerful cytotoxic and pro-apoptotic agent in mouse AtT-20 and rat PC12 tumour-derived cell lines. In addition, we provide evidence that euplotin C treatment results in rapid activation of ryanodine receptors, depletion of Ca2+ stores in the endoplasmic reticulum (ER), the release of cytochrome cfrom the mitochondria, activation of caspase-12, and activation of caspase-3, leading to apoptosis. Intracellular Ca2+ overload is an early event which induces apoptosis and is parallelled by ER stress and the release of cytochrome c,whereas caspase-12 may be activated by euplotin C at a later stage in the apoptosis pathway. These events, either independently or concomitantly, lead to the activation of the caspase-3 and its downstream effectors, triggering the cell to undergo apoptosis. These results demonstrate that euplotin C may be considered for the design of cytotoxic and pro-apoptotic new drugs.
2006
Cervia, D; Martini, Davide; GARCIA GIL, MARIA de las MERCEDES; DI GIUSEPPE, Graziano; Guella, G; Dini, F.; Bagnoli, Paola
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/201953
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 38
social impact