Geomorphological and glacial geological surveys and multiple cosmogenic nuclide analyses (10Be, 26Al, and 21Ne) allowed us to reconstruct the chronology of variations prior to the last glacial maximum of the East Antarctic Ice Sheet (EAIS) and valley glaciers in the Terra Nova Bay region. Glacially scoured coastal piedmonts with round-topped mountains occur below the highest local erosional trimline. They represent relict landscape features eroded by extensive ice overriding the whole coastal area before at least 6 Ma (predating the build-up of the Mt. Melbourne volcanic field). Since then, summit surfaces were continuously exposed and well preserved under polar condition with negligible erosion rates on the order of 17 cm/Ma. Complex older drifts rest on deglaciated areas above the younger late-Pleistocene glacial drift and below the previously overridden summits. The combination of stable and radionuclide isotopes documents complex exposure histories with substantial periods of burial combined with minimal erosion. The areas below rounded summits were repeatedly exposed and buried by ice from local and outlet glaciers. The exposure ages of the older drift(s) indicate multiple Pleistocene glacial cycles, which did not significantly modify the pre-existing landscape.

Multiple cosmogenic nuclides document complex Pleistocene exposure history of glacial drifts in Terra Nova Bay (northern Victoria Land, Antarctica).

SALVATORE, MARIA CRISTINA;BARONI, CARLO
2009-01-01

Abstract

Geomorphological and glacial geological surveys and multiple cosmogenic nuclide analyses (10Be, 26Al, and 21Ne) allowed us to reconstruct the chronology of variations prior to the last glacial maximum of the East Antarctic Ice Sheet (EAIS) and valley glaciers in the Terra Nova Bay region. Glacially scoured coastal piedmonts with round-topped mountains occur below the highest local erosional trimline. They represent relict landscape features eroded by extensive ice overriding the whole coastal area before at least 6 Ma (predating the build-up of the Mt. Melbourne volcanic field). Since then, summit surfaces were continuously exposed and well preserved under polar condition with negligible erosion rates on the order of 17 cm/Ma. Complex older drifts rest on deglaciated areas above the younger late-Pleistocene glacial drift and below the previously overridden summits. The combination of stable and radionuclide isotopes documents complex exposure histories with substantial periods of burial combined with minimal erosion. The areas below rounded summits were repeatedly exposed and buried by ice from local and outlet glaciers. The exposure ages of the older drift(s) indicate multiple Pleistocene glacial cycles, which did not significantly modify the pre-existing landscape.
2009
DI NICOLA, L.; Strasky, S.; Schlüchter, C.; Salvatore, MARIA CRISTINA; Akçar, N.; Kubik, P.; Christl, M.; Kasper, H. U.; Wieler, R.; Baroni, Carlo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/204595
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 42
social impact