ATP-sensitive potassium (KATP) channels play a prominent role in controlling cardiovascular function. In this paper, a novel series of 4-(1-oxo-2-cyclopentenyl)-1,4-benzothiazine derivatives modified at the C-2, and C-6 positions were synthesized as openers of vascular KATP channels. Most of the tested compounds evoked vasorelaxing effects on rat aortic rings and membrane hyperpolarization in human vascular smooth muscle cells, with potency similar or superior to that of the reference levcromakalim (LCRK). The selective KATP blocker glibenclamide antagonized the above vascular effects, confirming that KATP channels are closely involved in the mechanism of action. The experimental results confirmed the 1,4-benzothiazine nucleus as an optimal scaffold for activators of vascular KATP channels; moreover, the high level of potency exhibited by the 6-acetyl substituted benzothiazine 8, along with the lack of any significant interference with insulin secretion from pancreatic β-cells, paves the way to further develop a new series of potent activators of vascular KATP channels.

1,4-Benzothiazine ATP-Sensitive Potassium Channel Openers: Modifications at the C-2 and C-6 Positions

MARTELLI, ALMA;TESTAI, LARA;NOVELLI, MICHELA;MASIELLO, PELLEGRINO;CALDERONE, VINCENZO;
2013-01-01

Abstract

ATP-sensitive potassium (KATP) channels play a prominent role in controlling cardiovascular function. In this paper, a novel series of 4-(1-oxo-2-cyclopentenyl)-1,4-benzothiazine derivatives modified at the C-2, and C-6 positions were synthesized as openers of vascular KATP channels. Most of the tested compounds evoked vasorelaxing effects on rat aortic rings and membrane hyperpolarization in human vascular smooth muscle cells, with potency similar or superior to that of the reference levcromakalim (LCRK). The selective KATP blocker glibenclamide antagonized the above vascular effects, confirming that KATP channels are closely involved in the mechanism of action. The experimental results confirmed the 1,4-benzothiazine nucleus as an optimal scaffold for activators of vascular KATP channels; moreover, the high level of potency exhibited by the 6-acetyl substituted benzothiazine 8, along with the lack of any significant interference with insulin secretion from pancreatic β-cells, paves the way to further develop a new series of potent activators of vascular KATP channels.
2013
Martelli, Alma; Manfroni, G; Sabbatini, P; Barreca, Ml; Testai, Lara; Novelli, Michela; Sabatini, S; Massari, S; Tabarrini, O; Masiello, Pellegrino; Calderone, Vincenzo; Cecchetti, V.
File in questo prodotto:
File Dimensione Formato  
Jmc Martelli et al 2013.pdf

solo utenti autorizzati

Descrizione: Articolo finale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/216329
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact