The availability of a number of statistically reliable asteroid families and the independent confirmation of their likely collisional origin from dedicated spectroscopic campaigns has been a major breakthrough, making it possible to develop detailed studies of the physical properties of these groupings. Having been produced in energetic collisional events, families are an invaluable source of information on the physics governing these phenomena. In particular, they provide information about the size distribution of the fragments, and on the overall properties of the original ejection velocity fields. Important results have been obtained during the last 10 years on these subjects, with important implications for the general understanding of the collisional history of the asteroid main belt, and the origin of near-Earth asteroids. Some important problems have been raised from these studies and are currently debated. In particular, it has been difficult so far to reconcile the inferred properties of family-forming events with current understanding of the physics of catastrophic collisional breakup. Moreover, the contribution of families to the overall asteroid inventory, mainly at small sizes, is currently controversial. Recent investigations are also aimed at understanding which kind of dynamical evolution might have affected family members since the time of their formation. In addition to potential consequences on the interpretation of current data, there is some speculative possibility of obtaining some estimate of the ages of these groupings. Physical characterization of families will likely represent a prerequisite for further advancement in understanding the properties and history of the asteroid population.

Physical and Dynamical Properties of Asteroid Families

PAOLICCHI, PAOLO
2002-01-01

Abstract

The availability of a number of statistically reliable asteroid families and the independent confirmation of their likely collisional origin from dedicated spectroscopic campaigns has been a major breakthrough, making it possible to develop detailed studies of the physical properties of these groupings. Having been produced in energetic collisional events, families are an invaluable source of information on the physics governing these phenomena. In particular, they provide information about the size distribution of the fragments, and on the overall properties of the original ejection velocity fields. Important results have been obtained during the last 10 years on these subjects, with important implications for the general understanding of the collisional history of the asteroid main belt, and the origin of near-Earth asteroids. Some important problems have been raised from these studies and are currently debated. In particular, it has been difficult so far to reconcile the inferred properties of family-forming events with current understanding of the physics of catastrophic collisional breakup. Moreover, the contribution of families to the overall asteroid inventory, mainly at small sizes, is currently controversial. Recent investigations are also aimed at understanding which kind of dynamical evolution might have affected family members since the time of their formation. In addition to potential consequences on the interpretation of current data, there is some speculative possibility of obtaining some estimate of the ages of these groupings. Physical characterization of families will likely represent a prerequisite for further advancement in understanding the properties and history of the asteroid population.
2002
Zappalà, V.; Cellino, A.; Dell'Oro, A.; Paolicchi, Paolo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/227549
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact