Abstract OBJECTIVE: 3-Iodothyronamine (T1 AM), an analog of thyroid hormone, is a recently discovered fast-acting endogenous metabolite. Single high-dose treatments of T1 AM have produced rapid short-term effects, including a reduction of body temperature, bradycardia, and hyperglycemia in mice. DESIGN AND METHODS: The effect of daily low doses of T1 AM (10 mg/kg) for 8 days on weight loss and metabolism in spontaneously overweight mice was monitored. The experiments were repeated twice (n = 4). Nuclear magnetic resonance (NMR) spectroscopy of plasma and real-time analysis of exhaled 13 CO2 in breath by cavity ring down spectroscopy (CRDS) were used to detect T1 AM-induced lipolysis. RESULTS: CRDS detected increased lipolysis in breath shortly after T1 AM administration that was associated with a significant weight loss but independent of food consumption. NMR spectroscopy revealed alterations in key metabolites in serum: valine, glycine, and 3-hydroxybutyrate, suggesting that the subchronic effects of T1 AM include both lipolysis and protein breakdown. After discontinuation of T1 AM treatment, mice regained only 1.8% of the lost weight in the following 2 weeks, indicating lasting effects of T1 AM on weight maintenance. CONCLUSIONS: CRDS in combination with NMR and 13 C-metabolic tracing constitute a powerful method of investigation in obesity studies for identifying in vivo biochemical pathway shifts and unanticipated debilitating side effects. Copyright © 2013 The Obesity Society.

NMR-based metabolomics and breath studies show lipid and protein catabolism during low dose chronic T1 AM treatment

ZUCCHI, RICCARDO;CHIELLINI, GRAZIA;
2013-01-01

Abstract

Abstract OBJECTIVE: 3-Iodothyronamine (T1 AM), an analog of thyroid hormone, is a recently discovered fast-acting endogenous metabolite. Single high-dose treatments of T1 AM have produced rapid short-term effects, including a reduction of body temperature, bradycardia, and hyperglycemia in mice. DESIGN AND METHODS: The effect of daily low doses of T1 AM (10 mg/kg) for 8 days on weight loss and metabolism in spontaneously overweight mice was monitored. The experiments were repeated twice (n = 4). Nuclear magnetic resonance (NMR) spectroscopy of plasma and real-time analysis of exhaled 13 CO2 in breath by cavity ring down spectroscopy (CRDS) were used to detect T1 AM-induced lipolysis. RESULTS: CRDS detected increased lipolysis in breath shortly after T1 AM administration that was associated with a significant weight loss but independent of food consumption. NMR spectroscopy revealed alterations in key metabolites in serum: valine, glycine, and 3-hydroxybutyrate, suggesting that the subchronic effects of T1 AM include both lipolysis and protein breakdown. After discontinuation of T1 AM treatment, mice regained only 1.8% of the lost weight in the following 2 weeks, indicating lasting effects of T1 AM on weight maintenance. CONCLUSIONS: CRDS in combination with NMR and 13 C-metabolic tracing constitute a powerful method of investigation in obesity studies for identifying in vivo biochemical pathway shifts and unanticipated debilitating side effects. Copyright © 2013 The Obesity Society.
2013
Haviland, Ja; Reiland, H; Butz, De; Tonelli, M; Porter, Wp; Zucchi, Riccardo; Scanlan, Ts; Chiellini, Grazia; Assadi Porter, F. M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/233732
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 36
social impact