Urban sensing is an emerging application field for Wireless Sensor Networks (WSNs), where a number of static sensors is sparsely deployed in an urban area to collect environmental information. Data sensed by each sensor are, then, opportunistically transmitted to Mobile Nodes (MNs) that happen to be in contact. In the considered scenario, communications between MNs and sensors require paradigms with a minimal synchronization between devices, extremely fast and energy efficient, especially at the sensor side. To deal with the above issues, in [1] we proposed a hybrid protocol for data delivery from sensors to MNs, named Hybrid Adaptive Interleaved Data Protocol (HI). By combining Erasure Coding (EC) with an Automatic Repeat reQuest (ARQ) scheme, the proposed protocol maximizes the reliability of communications while minimizing the energy consumed by sensors. In this paper, we present an in-depth analysis of the HI performance. We provide an analytical evaluation by defining a flexible model to derive the probability of data delivery and exploiting it to investigate the performance over a wide range of parameters. Moreover, we perform an experimental study to evaluate the HI effectiveness on real sensor platforms. Specifically, we analyze the impact of resource constraints imposed by sensors on data delivery and provide a careful characterization of its actual consumption of resources.

Energy efficient and reliable data delivery in urban sensing applications: A performance analysis

ANASTASI, GIUSEPPE;
2013-01-01

Abstract

Urban sensing is an emerging application field for Wireless Sensor Networks (WSNs), where a number of static sensors is sparsely deployed in an urban area to collect environmental information. Data sensed by each sensor are, then, opportunistically transmitted to Mobile Nodes (MNs) that happen to be in contact. In the considered scenario, communications between MNs and sensors require paradigms with a minimal synchronization between devices, extremely fast and energy efficient, especially at the sensor side. To deal with the above issues, in [1] we proposed a hybrid protocol for data delivery from sensors to MNs, named Hybrid Adaptive Interleaved Data Protocol (HI). By combining Erasure Coding (EC) with an Automatic Repeat reQuest (ARQ) scheme, the proposed protocol maximizes the reliability of communications while minimizing the energy consumed by sensors. In this paper, we present an in-depth analysis of the HI performance. We provide an analytical evaluation by defining a flexible model to derive the probability of data delivery and exploiting it to investigate the performance over a wide range of parameters. Moreover, we perform an experimental study to evaluate the HI effectiveness on real sensor platforms. Specifically, we analyze the impact of resource constraints imposed by sensors on data delivery and provide a careful characterization of its actual consumption of resources.
2013
Borgia, E.; Anastasi, Giuseppe; Conti, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/246572
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact