This work starts from modeling the scheduling of n jobs on m machines/stages as flowshop with buffers in manufacturing. A mixed-integer linear programing model is presented, showing that buffers of size n - 2 allow permuting sequences of jobs between stages. This model is addressed in the literature as non-permutation flowshop scheduling (NPFS) and is described in this article by a disjunctive graph (digraph) with the purpose of designing specialized heuristic and metaheuristics algorithms for the NPFS problem. Ant colony optimization (ACO) with the biologically inspired mechanisms of learned desirability and pheromone rule is shown to produce natively eligible schedules, as opposed to most metaheuristics approaches, which improve permutation solutions found by other heuristics. The proposed ACO has been critically compared and assessed by computation experiments over existing native approaches. Most makespan upper bounds of the established benchmark problems from Taillard (1993) and Demirkol, Mehta, and Uzsoy (1998) with up to 500 jobs on 20 machines have been improved by the proposed ACO.

Scheduling flow lines with buffers by ant colony digraph

ROSSI, ANDREA;LANZETTA, MICHELE
2013-01-01

Abstract

This work starts from modeling the scheduling of n jobs on m machines/stages as flowshop with buffers in manufacturing. A mixed-integer linear programing model is presented, showing that buffers of size n - 2 allow permuting sequences of jobs between stages. This model is addressed in the literature as non-permutation flowshop scheduling (NPFS) and is described in this article by a disjunctive graph (digraph) with the purpose of designing specialized heuristic and metaheuristics algorithms for the NPFS problem. Ant colony optimization (ACO) with the biologically inspired mechanisms of learned desirability and pheromone rule is shown to produce natively eligible schedules, as opposed to most metaheuristics approaches, which improve permutation solutions found by other heuristics. The proposed ACO has been critically compared and assessed by computation experiments over existing native approaches. Most makespan upper bounds of the established benchmark problems from Taillard (1993) and Demirkol, Mehta, and Uzsoy (1998) with up to 500 jobs on 20 machines have been improved by the proposed ACO.
2013
Rossi, Andrea; Lanzetta, Michele
File in questo prodotto:
File Dimensione Formato  
Scheduling Flow Lines with Buffers by Ant Colony Digraph AAM.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 331.65 kB
Formato Adobe PDF
331.65 kB Adobe PDF Visualizza/Apri
Scheduling flow lines with buffers by ant colony digraph.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Importato da Ugov Ricerca - Accesso privato/ristretto
Dimensione 479.95 kB
Formato Adobe PDF
479.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/257141
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
social impact