Transcutaneous spinal direct current stimulation (tsDCS) is a new promising technique for modulating spinal cord function in humans. However, its effects on corticospinal pathways and lower motorneuron excitability are poorly understood. We studied the effects of tsDCS on motor unit recruitment by evaluating changes in motor unit number (MUNE) and peripheral silent period (PSP) after sham (s-tsDCS), anodal (a-tsDCS) and cathodal (c-tsDCS) tsDCS applied either over the cervical or the lower thoracic spinal cord in healthy subjects. For the calculation of MUNE we used the multipoint incremental technique recording from either the ulnar nerve innervated abductor digiti minimi (ADM) or the median nerve innervated abductor pollicis brevis (APB) muscle. c-tsDCS dramatically increases MUNE values following cervical polarization, while sham and anodal polarization have no significant effect (APB: F(4,99)=26.4, p<0.001, two-way repeated measures ANOVA with "time" and "stimulation" as factors; ADM: F(4,99)=22.1, p<0.0001). At the same time, c-tsDCS dampened PSP respect to sham and anodal conditions (p<0.0001). Interestingly, also thoracic c-tsDCS significantly improved motor unit recruitment compared with both s-tsDCS and a-tsDCS (APB: F(4,99)=20.1, p<0.0001; ADM: F(4,99)=16.6, p<0.0001). Our data in healthy subjects suggest that tsDCS, possibly also through supraspinal effects, could provide a novel therapeutic tool in managing several pathological conditions characterized by reduced motor unit recruitment, such as stroke and spinal cord injuries.

Cathodal transcutaneous spinal direct current stimulation (tsDCS) improves motor unit recruitment in healthy subjects.

SARTUCCI, FERDINANDO
2014-01-01

Abstract

Transcutaneous spinal direct current stimulation (tsDCS) is a new promising technique for modulating spinal cord function in humans. However, its effects on corticospinal pathways and lower motorneuron excitability are poorly understood. We studied the effects of tsDCS on motor unit recruitment by evaluating changes in motor unit number (MUNE) and peripheral silent period (PSP) after sham (s-tsDCS), anodal (a-tsDCS) and cathodal (c-tsDCS) tsDCS applied either over the cervical or the lower thoracic spinal cord in healthy subjects. For the calculation of MUNE we used the multipoint incremental technique recording from either the ulnar nerve innervated abductor digiti minimi (ADM) or the median nerve innervated abductor pollicis brevis (APB) muscle. c-tsDCS dramatically increases MUNE values following cervical polarization, while sham and anodal polarization have no significant effect (APB: F(4,99)=26.4, p<0.001, two-way repeated measures ANOVA with "time" and "stimulation" as factors; ADM: F(4,99)=22.1, p<0.0001). At the same time, c-tsDCS dampened PSP respect to sham and anodal conditions (p<0.0001). Interestingly, also thoracic c-tsDCS significantly improved motor unit recruitment compared with both s-tsDCS and a-tsDCS (APB: F(4,99)=20.1, p<0.0001; ADM: F(4,99)=16.6, p<0.0001). Our data in healthy subjects suggest that tsDCS, possibly also through supraspinal effects, could provide a novel therapeutic tool in managing several pathological conditions characterized by reduced motor unit recruitment, such as stroke and spinal cord injuries.
2014
Bocci, T; Vannini, B; Torzini, A; Mazzatenta, A; Vergari, M; Cogiamanian, F; Priori, A; Sartucci, Ferdinando
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/506474
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact