This work illustrates the 3D set up model and the results concerning the recent analysis of fuel dispersion in the MYRRHA-FASTEF reactor performed with SIMMER code within the EU-FP7 SEARCH Project. Under severe accidental conditions, the release of fuel in the primary system can occur in case of fuel rod clad failure and degradation. Two cases were therefore taken into account, an imposed fuel release to study key parameters which influence the dispersion phenomenon and a coolant flow blockage in a fuel assembly. The reactor was simulated by a 3D Cartesian geometry with 65x63x42 cell mesh. Steady-state and transient analyses were performed by SIMMER-IV. Steady-state analysis was performed in order to assess the correct operability of the code and of the model. The results were compared with the design values. The most significant results obtained for temperature trends and profiles, velocity and mass flow rate trends are reported. Transient results were also analysed, i.e. fuel dispersion transients were simulated, comparing the effect of fuel porosity on the fuel dispersion inside the pool. In addition, the effects of the release position and the fuel particle dimension on the dispersion phenomenon were also investigated. The final section of the paper describes the effects of a flow blockage on the core degradation and dispersion of fuel particles in the primary circuit of the MYRRHA reactor. This simulation, with fuel porosity equal to 5%, started after a preliminary steady state condition. The mass flow rate in one of the inner fuel assemblies was then reduced to about 10% of the initial value. The results show that the SIMMER-IV code is capable of predicting steady-state results in good agreement with the nominal values, also confirming the correctness of the set up model.

Fuel Dispersion and Flow Blockage Analyses for the Myrrha-Fastef Reactor by Simmer Code

EBOLI, MARICA;FORGIONE, NICOLA
2014-01-01

Abstract

This work illustrates the 3D set up model and the results concerning the recent analysis of fuel dispersion in the MYRRHA-FASTEF reactor performed with SIMMER code within the EU-FP7 SEARCH Project. Under severe accidental conditions, the release of fuel in the primary system can occur in case of fuel rod clad failure and degradation. Two cases were therefore taken into account, an imposed fuel release to study key parameters which influence the dispersion phenomenon and a coolant flow blockage in a fuel assembly. The reactor was simulated by a 3D Cartesian geometry with 65x63x42 cell mesh. Steady-state and transient analyses were performed by SIMMER-IV. Steady-state analysis was performed in order to assess the correct operability of the code and of the model. The results were compared with the design values. The most significant results obtained for temperature trends and profiles, velocity and mass flow rate trends are reported. Transient results were also analysed, i.e. fuel dispersion transients were simulated, comparing the effect of fuel porosity on the fuel dispersion inside the pool. In addition, the effects of the release position and the fuel particle dimension on the dispersion phenomenon were also investigated. The final section of the paper describes the effects of a flow blockage on the core degradation and dispersion of fuel particles in the primary circuit of the MYRRHA reactor. This simulation, with fuel porosity equal to 5%, started after a preliminary steady state condition. The mass flow rate in one of the inner fuel assemblies was then reduced to about 10% of the initial value. The results show that the SIMMER-IV code is capable of predicting steady-state results in good agreement with the nominal values, also confirming the correctness of the set up model.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/529070
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact