Nanotransistors offer great prospect for the development of innovative THz detectors based on the non-linearity of transport characteristics. Semiconductor nanowires are appealing for their one-dimensional nature and intrinsically low capacitance of the devices, while graphene, with its record-high room-temperature mobility, has the potential to exploit plasma wave resonances in the transistor channel to achieve high-responsivity and tuneable detection. First graphene detectors have been recently demonstrated in both monolayer and bilayer field effect devices performances already suitable for first imaging application. Here will discuss the physics and technology of these devices, their operation, as well as first examples of imaging applications.

THz detection in graphene nanotransistors

TREDICUCCI, ALESSANDRO;Polini M.;
2014-01-01

Abstract

Nanotransistors offer great prospect for the development of innovative THz detectors based on the non-linearity of transport characteristics. Semiconductor nanowires are appealing for their one-dimensional nature and intrinsically low capacitance of the devices, while graphene, with its record-high room-temperature mobility, has the potential to exploit plasma wave resonances in the transistor channel to achieve high-responsivity and tuneable detection. First graphene detectors have been recently demonstrated in both monolayer and bilayer field effect devices performances already suitable for first imaging application. Here will discuss the physics and technology of these devices, their operation, as well as first examples of imaging applications.
2014
9780819498977
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/607869
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact