Vascular endothelial growth factor (VEGF) blockers have been developed for the treatment of proliferative diabetic retinopathy (PDR), the leading cause of visual impairments in the working-age population in the Western world. However, limitations to anti-VEGF therapies may exist because of the local production of other proangiogenic factors that may cause resistance to anti-VEGF interventions. Thus, novel therapeutic approaches targeting additional pathways are required. Here, we identified asulfatedderivativeofthe Escherichia coli polysaccharide K5 [K5-N,OS(H)] as a multitarget molecule highly effective in inhibiting VEGF-driven angiogenic responses in different in vitro, ex vivo, and in vivo assays, including a murine model of oxygen-induced retinopathy. Furthermore, K5-N,OS(H) binds a variety of heparin-binding angiogenic factors upregulated in PDR vitreous humor besides VEGF, thus inhibiting their biological activity. Finally, K5-N,OS(H) ampers the angiogenic activity exerted in vitro and in vivo by human vitreous fluid samples collected from patients with PDR. Together, the data provide compelling experimental evidence that K5-N,OS(H) represents an antiangiogenic multitarget molecule with potential implications for the therapy of pathologic neovessel formation in the retina of patients with PDR.

Therapeutic Potential of Anti-Angiogenic Multi-Target N,O-Sulfated E. Coli K5 Polysaccharide in Diabetic Retinopathy.

DAL MONTE, MASSIMO;CAMMALLERI, MAURIZIO;BAGNOLI, PAOLA;
2015-01-01

Abstract

Vascular endothelial growth factor (VEGF) blockers have been developed for the treatment of proliferative diabetic retinopathy (PDR), the leading cause of visual impairments in the working-age population in the Western world. However, limitations to anti-VEGF therapies may exist because of the local production of other proangiogenic factors that may cause resistance to anti-VEGF interventions. Thus, novel therapeutic approaches targeting additional pathways are required. Here, we identified asulfatedderivativeofthe Escherichia coli polysaccharide K5 [K5-N,OS(H)] as a multitarget molecule highly effective in inhibiting VEGF-driven angiogenic responses in different in vitro, ex vivo, and in vivo assays, including a murine model of oxygen-induced retinopathy. Furthermore, K5-N,OS(H) binds a variety of heparin-binding angiogenic factors upregulated in PDR vitreous humor besides VEGF, thus inhibiting their biological activity. Finally, K5-N,OS(H) ampers the angiogenic activity exerted in vitro and in vivo by human vitreous fluid samples collected from patients with PDR. Together, the data provide compelling experimental evidence that K5-N,OS(H) represents an antiangiogenic multitarget molecule with potential implications for the therapy of pathologic neovessel formation in the retina of patients with PDR.
2015
Rezzola, Sara; DAL MONTE, Massimo; Belleri, Mirella; Bugatti, Antonella; Chiodelli, Paola; Corsini, Michela; Cammalleri, Maurizio; Cancarini, Anna; Morbidelli, Lucia; Pasqua, Oreste; Bagnoli, Paola; Semeraro, Francesco; Presta, Marco
File in questo prodotto:
File Dimensione Formato  
2015 - Diabetes.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.74 MB
Formato Adobe PDF
1.74 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/695264
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 20
social impact