In this paper, we present a new, efficient implementation of a fully polarizable QM/MM/continuum model based on an induced-dipoles polarizable force field and on the Conductor-like Screening Model as a polarizable continuum in combination with a self-consistent field QM method. The paper focuses on the implementation of the MM/continuum embedding, where the two polarizable methods are fully coupled to take into account their mutual polarization. With respect to previous implementations, we achieve for the first time a linear scaling with respect to both the computational cost and the memory requirements without limitations on the molecular cavity shape. This is achieved thanks to the use of the recently developed ddCOSMO model for the continuum and the Fast Multipole Method for the force field, together with an efficient iterative procedure. Therefore, it becomes possible to include in the classical layer as much as several tens of thousands of atoms with a limited computational effort.

Achieving Linear Scaling in Computational Cost for a Fully Polarizable MM/Continuum Embedding

CAPRASECCA, STEFANO;LIPPARINI, FILIPPO
2015-01-01

Abstract

In this paper, we present a new, efficient implementation of a fully polarizable QM/MM/continuum model based on an induced-dipoles polarizable force field and on the Conductor-like Screening Model as a polarizable continuum in combination with a self-consistent field QM method. The paper focuses on the implementation of the MM/continuum embedding, where the two polarizable methods are fully coupled to take into account their mutual polarization. With respect to previous implementations, we achieve for the first time a linear scaling with respect to both the computational cost and the memory requirements without limitations on the molecular cavity shape. This is achieved thanks to the use of the recently developed ddCOSMO model for the continuum and the Fast Multipole Method for the force field, together with an efficient iterative procedure. Therefore, it becomes possible to include in the classical layer as much as several tens of thousands of atoms with a limited computational effort.
2015
Caprasecca, Stefano; Jurinovich, Sandro; Louis, Lagardère; Benjamin, Stamm; Lipparini, Filippo
File in questo prodotto:
File Dimensione Formato  
JCTC_FMM.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
PPJCTC_FMM.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/697063
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 40
social impact