We study a class of generalized bundle methods for which the stabilizing term can be any closed convex function satisfying certain properties. This setting covers several algorithms from the literature that have been so far regarded as distinct. Under a different hypothesis on the stabilizing term and/or the function to be minimized, we prove finite termination, asymptotic convergence, and finite convergence to an optimal point, with or without limits on the number of serious steps and/or requiring the proximal parameter to go to infinity. The convergence proofs leave a high degree of freedom in the crucial implementative features of the algorithm, i.e., the management of the bundle of subgradients (β-strategy) and of the proximal parameter (t-strategy). We extensively exploit a dual view of bundle methods, which are shown to be a dual ascent approach to one nonlinear problem in an appropriate dual space, where nonlinear subproblems are approximately solved at each step with an inner linearization approach. This allows us to precisely characterize the changes in the subproblems during the serious steps, since the dual problem is not tied to the local concept of ε-subdifferential. For some of the proofs, a generalization of inf-compactness, called *-compactness, is required; this concept is related to that of asymptotically well-behaved functions.

Generalized Bundle Methods

FRANGIONI, ANTONIO
2002-01-01

Abstract

We study a class of generalized bundle methods for which the stabilizing term can be any closed convex function satisfying certain properties. This setting covers several algorithms from the literature that have been so far regarded as distinct. Under a different hypothesis on the stabilizing term and/or the function to be minimized, we prove finite termination, asymptotic convergence, and finite convergence to an optimal point, with or without limits on the number of serious steps and/or requiring the proximal parameter to go to infinity. The convergence proofs leave a high degree of freedom in the crucial implementative features of the algorithm, i.e., the management of the bundle of subgradients (β-strategy) and of the proximal parameter (t-strategy). We extensively exploit a dual view of bundle methods, which are shown to be a dual ascent approach to one nonlinear problem in an appropriate dual space, where nonlinear subproblems are approximately solved at each step with an inner linearization approach. This allows us to precisely characterize the changes in the subproblems during the serious steps, since the dual problem is not tied to the local concept of ε-subdifferential. For some of the proofs, a generalization of inf-compactness, called *-compactness, is required; this concept is related to that of asymptotically well-behaved functions.
2002
Frangioni, Antonio
File in questo prodotto:
File Dimensione Formato  
GenBundle.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 363.97 kB
Formato Adobe PDF
363.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/74479
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 123
  • ???jsp.display-item.citation.isi??? 106
social impact