This paper reports on an experimental study of a closed loop Flat Plate Pulsating Heat Pipe (FPPHP) tested on ground and on board of an aircraft during the 60th ESA parabolic flight campaign, during which hyper- and microgravity conditions were reproduced. The tested FPPHP consists of two brazed copper plates, into one of which a continuous rectangular channel (1.6 x 1.7 mm(2)) with 12 bends in the evaporator is machined. The channel is filled with FC-72 as working fluid with a volumetric filling ratio of 50%. Tests have been conducted with the FPPHP positioned both horizontally and vertically (bottomheated). The FPPHP presents an innovative design, involving the milling of grooves between the channels. Experimental results on the ground show that the thermal device can transfer more than 180 W in both inclinations, and that the horizontal operation is characterized by repeated stop-and-start phases and lower thermal performance. The FPPHP can operate under microgravity conditions and with a transient gravity force, with global thermal resistance reaching 50% and 25% of that of the empty plate (or around 66% and 35% of a full copper spreader of same overall dimensions), in horizontal and vertical orientation respectively. The temperature homogeneity remains within 10 K in the evaporator section and 3 K in the condenser section with thermal power transfer up to 180 W. Minimum thermal resistance of 0.12 K W-1 was recorded, with its value rising as heating grew more powerful. A parabolic flight test demonstrated that the FPPHP in vertical inclination is rapidly influenced by variation of gravity field, even if, due to the novel geometry, it continues to operate under microgravity. In horizontal inclination, on the other hand, there was no observable parameter change during gravity field variations.

Experimental study of a closed loop flat plate pulsating heat pipe under a varying gravity force

MAMELI, MAURO;FILIPPESCHI, SAURO;
2015-01-01

Abstract

This paper reports on an experimental study of a closed loop Flat Plate Pulsating Heat Pipe (FPPHP) tested on ground and on board of an aircraft during the 60th ESA parabolic flight campaign, during which hyper- and microgravity conditions were reproduced. The tested FPPHP consists of two brazed copper plates, into one of which a continuous rectangular channel (1.6 x 1.7 mm(2)) with 12 bends in the evaporator is machined. The channel is filled with FC-72 as working fluid with a volumetric filling ratio of 50%. Tests have been conducted with the FPPHP positioned both horizontally and vertically (bottomheated). The FPPHP presents an innovative design, involving the milling of grooves between the channels. Experimental results on the ground show that the thermal device can transfer more than 180 W in both inclinations, and that the horizontal operation is characterized by repeated stop-and-start phases and lower thermal performance. The FPPHP can operate under microgravity conditions and with a transient gravity force, with global thermal resistance reaching 50% and 25% of that of the empty plate (or around 66% and 35% of a full copper spreader of same overall dimensions), in horizontal and vertical orientation respectively. The temperature homogeneity remains within 10 K in the evaporator section and 3 K in the condenser section with thermal power transfer up to 180 W. Minimum thermal resistance of 0.12 K W-1 was recorded, with its value rising as heating grew more powerful. A parabolic flight test demonstrated that the FPPHP in vertical inclination is rapidly influenced by variation of gravity field, even if, due to the novel geometry, it continues to operate under microgravity. In horizontal inclination, on the other hand, there was no observable parameter change during gravity field variations.
2015
Ayel, V; Araneo, L.; Scalambra, A.; Mameli, Mauro; Romestant, C.; Piteau, A.; Marengo, M.; Filippeschi, Sauro; Bertin, Y.
File in questo prodotto:
File Dimensione Formato  
Mamel et al. IJTS 2014.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 5.64 MB
Formato Adobe PDF
5.64 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Paper_THESCI-D-14-00831_Ayel-et-al_Final.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/769463
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 57
social impact