Aims: The industrial development of a product requires performing a deep analysis to highlight its characteristics useful for future design. The clinical use of a product stimulates knowledge improvement about it in a constant effort of progress. This work shows the biological characterization of CMC composite mesh. CMC polypropylene prosthesis was seeded with Human fibroblast BJ. Samples (cells and medium) were collected at different time points in order to perform different analysis: inflammatory markers quantification; collagens immunohistochemistry; matrix metalloproteinases zimography; extracellular matrix proteomic profile. Findings: CMC presented a good cell viability rate and cell growth during the 21 days. The inflammatory profile showed an initial secretion of anti-inflammatory IL-10 and a final increase of pro-inflammatory IL-6. Immunocytochemistry highlighted a similar Collagen type I/type III ratio. The proteomic analysis evidenced the ECM protein content profile composed, mainly, by collagens, fibronectin, laminin. MMPs resulted both expressed when in contact to mesh. Conclusions: CMC shows a good cell biocompatibility and growth. The increase of pro-inflammatory markers could stimulate proliferation, influencing the integration process in human body. Proteomics highlights the ECM modulation by CMC. An integrated investigation of these biological analyses with mechanical data should improve the design process of a new product.

Biological and Proteomic characterization of a composite mesh for abdominal wall hernia treatment: Reference Study

VOZZI, FEDERICO
;
CECCHETTINI, ANTONELLA;DOMENICI, CLAUDIO
2017-01-01

Abstract

Aims: The industrial development of a product requires performing a deep analysis to highlight its characteristics useful for future design. The clinical use of a product stimulates knowledge improvement about it in a constant effort of progress. This work shows the biological characterization of CMC composite mesh. CMC polypropylene prosthesis was seeded with Human fibroblast BJ. Samples (cells and medium) were collected at different time points in order to perform different analysis: inflammatory markers quantification; collagens immunohistochemistry; matrix metalloproteinases zimography; extracellular matrix proteomic profile. Findings: CMC presented a good cell viability rate and cell growth during the 21 days. The inflammatory profile showed an initial secretion of anti-inflammatory IL-10 and a final increase of pro-inflammatory IL-6. Immunocytochemistry highlighted a similar Collagen type I/type III ratio. The proteomic analysis evidenced the ECM protein content profile composed, mainly, by collagens, fibronectin, laminin. MMPs resulted both expressed when in contact to mesh. Conclusions: CMC shows a good cell biocompatibility and growth. The increase of pro-inflammatory markers could stimulate proliferation, influencing the integration process in human body. Proteomics highlights the ECM modulation by CMC. An integrated investigation of these biological analyses with mechanical data should improve the design process of a new product.
2017
Vozzi, Federico; Guerrazzi, Ilenia; Campolo, Jonica; Cozzi, Lorena; Comelli, Laura; Cecchettini, Antonella; Rocchiccioli, Silvia; Domenici, Claudio
File in questo prodotto:
File Dimensione Formato  
Journal_of_Biomedical_Materials_Research_Part_B-_Applied_Biomaterials 2016.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 316.38 kB
Formato Adobe PDF
316.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/796194
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact