We investigate the optical response of individual porphyrin (TPPS3) nanoaggregates anchored onto a glass substrate by using a specific configuration of Polarization-Modulation Scanning Near-Field Optical Microscopy (PM-SNOM). Subdiffraction spatial resolution and sensitivity to the chiroptical properties of the material is reported. By demodulating the transmitted signal at the first and the second harmonics, the response of the nanoggregates to circular and linear polarization is simultaneously acquired in the same scan. In order to evaluate the relevant dichroic coefficients, we analyze a sample comprising several tens of individual nanoaggregates by using a model based on the Mueller matrix formalism. Circular dichroism in the nanoaggregates is demonstrated to stem from their molecular structure, whereas linear dichroism occurs as a consequence of the strongly anisotropic shape of the deposited nanoaggregates.

Multichannel near-field nanoscopy of circular and linear dichroism at the solid-state

TANTUSSI, FRANCESCO;FUSO, FRANCESCO;ALLEGRINI, MARIA
2016-01-01

Abstract

We investigate the optical response of individual porphyrin (TPPS3) nanoaggregates anchored onto a glass substrate by using a specific configuration of Polarization-Modulation Scanning Near-Field Optical Microscopy (PM-SNOM). Subdiffraction spatial resolution and sensitivity to the chiroptical properties of the material is reported. By demodulating the transmitted signal at the first and the second harmonics, the response of the nanoggregates to circular and linear polarization is simultaneously acquired in the same scan. In order to evaluate the relevant dichroic coefficients, we analyze a sample comprising several tens of individual nanoaggregates by using a model based on the Mueller matrix formalism. Circular dichroism in the nanoaggregates is demonstrated to stem from their molecular structure, whereas linear dichroism occurs as a consequence of the strongly anisotropic shape of the deposited nanoaggregates.
2016
Lazzini, G.; Castriciano, M.; Trapani, M.; Micali, N.; Tantussi, Francesco; Monsù Scolaro, L.; Patanè, S.; Fuso, Francesco; Allegrini, Maria
File in questo prodotto:
File Dimensione Formato  
SPIE_2016_9925_17.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 983.47 kB
Formato Adobe PDF
983.47 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/821355
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact