A directional spectrometer that uses a superheated emulsion of dichlorotetrafluoroethane at the centre of a 30 cm diameter moderating-sphere of nylon-6. The system has a telescope-design wherein the detector views a narrow solid angle of about 1/6 steradians. The hydrogenous sphere effectively attenuates laterally incident neutrons, thus providing a strong angular dependence of the response. The central detector is sequentially operated at seven temperatures between 25 and 55°C in order to generate a matrix of nested response functions suitable for few-channel spectrometry. The response matrix of the system has been determined by calibrations with monoenergetic neutrons and by Monte Carlo neutron transport calculations. The double-differential unfolding method developed for this system applies the principle of maximum entropy and allows for the rigorous use of all a priori information. The spectrometer is intended for use in the mixed neutron/photon fields encountered in the nuclear power industry, being suitable for spatially distributed radiation sources with maximum neutron energies up to 10 MeV.

A telescope-design neutron spectrometer

D'ERRICO, FRANCESCO;GIUSTI, VALERIO;
2004-01-01

Abstract

A directional spectrometer that uses a superheated emulsion of dichlorotetrafluoroethane at the centre of a 30 cm diameter moderating-sphere of nylon-6. The system has a telescope-design wherein the detector views a narrow solid angle of about 1/6 steradians. The hydrogenous sphere effectively attenuates laterally incident neutrons, thus providing a strong angular dependence of the response. The central detector is sequentially operated at seven temperatures between 25 and 55°C in order to generate a matrix of nested response functions suitable for few-channel spectrometry. The response matrix of the system has been determined by calibrations with monoenergetic neutrons and by Monte Carlo neutron transport calculations. The double-differential unfolding method developed for this system applies the principle of maximum entropy and allows for the rigorous use of all a priori information. The spectrometer is intended for use in the mixed neutron/photon fields encountered in the nuclear power industry, being suitable for spatially distributed radiation sources with maximum neutron energies up to 10 MeV.
2004
D'Errico, Francesco; Giusti, Valerio; Reginatto, M; Wiegel, B.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/83781
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 16
social impact