In this paper, the numerical investigation of an ultra wideband (UWB) localization technique suitable for the tracking and control of an unmanned aerial vehicle (UAV) in a specific outdoor scenario is presented. A set of UWB nodes are located on a moving/still ground station (GS) and interrogate an UWB node placed on the UAV that is flying in front of the GS. The distances between the GS-nodes and the UAV-node are estimated through a conventional two-way time-of-flight ranging method, one at a time, and then used in a multilateration algorithm. Due to the unavoidable relative motion between the UAV and the GS, the above distances are actually measured for different UAV-GS relative positions, and then, the UAV localization performance deteriorates as a function of the UAV-GS relative speed and the ranging-method processing time. An approach is here proposed to mitigate the above adverse effect, by exploiting an estimate of the UAV-GS relative speed along the GS forward direction. A preliminary numerical analysis is used to show that a decimeter order localization accuracy can be obtained for a tridimensional localization process.

Numerical investigation of an UWB localization technique for unmanned aerial vehicles in outdoor scenarios

BUFFI, ALICE;NEPA, PAOLO;
2017-01-01

Abstract

In this paper, the numerical investigation of an ultra wideband (UWB) localization technique suitable for the tracking and control of an unmanned aerial vehicle (UAV) in a specific outdoor scenario is presented. A set of UWB nodes are located on a moving/still ground station (GS) and interrogate an UWB node placed on the UAV that is flying in front of the GS. The distances between the GS-nodes and the UAV-node are estimated through a conventional two-way time-of-flight ranging method, one at a time, and then used in a multilateration algorithm. Due to the unavoidable relative motion between the UAV and the GS, the above distances are actually measured for different UAV-GS relative positions, and then, the UAV localization performance deteriorates as a function of the UAV-GS relative speed and the ranging-method processing time. An approach is here proposed to mitigate the above adverse effect, by exploiting an estimate of the UAV-GS relative speed along the GS forward direction. A preliminary numerical analysis is used to show that a decimeter order localization accuracy can be obtained for a tridimensional localization process.
2017
Lazzari, Fabrizio; Buffi, Alice; Nepa, Paolo; Lazzari, Sandro
File in questo prodotto:
File Dimensione Formato  
2017_SJ_UWB_PostPrint.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF Visualizza/Apri
2017_SJ_UWB_PostPrint_Buffi_864767.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.63 MB
Formato Adobe PDF
2.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/864767
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 54
social impact