Vector perturbation (VP) is a nonlinear precoding technique that achieves near-capacity performance in multiuser multiple-input multiple-output systems at the expense of large complexity due to the search for the optimum perturbation vector. In this paper, we present the hybrid Tomlinson–Harashima VP (TH-VP) algorithm, a novel zero-forcing pre coding scheme, which combines TH precoding to remove interuser interference, and VP precoding to equalize each user’s multiple spatial streams. We show that the two nonlinear techniques can be integrated in a single optimization and that the proposed algorithm has lower computational requirements than any other. The performance of TH-VP is analyzed and simulation results show that TH-VP outperforms conventional zero-forcing VP and approaches the performance of dirty paper coding.

Hybrid TH-VP Precoding for Multi-User MIMO

MORETTI, MARCO;
2017-01-01

Abstract

Vector perturbation (VP) is a nonlinear precoding technique that achieves near-capacity performance in multiuser multiple-input multiple-output systems at the expense of large complexity due to the search for the optimum perturbation vector. In this paper, we present the hybrid Tomlinson–Harashima VP (TH-VP) algorithm, a novel zero-forcing pre coding scheme, which combines TH precoding to remove interuser interference, and VP precoding to equalize each user’s multiple spatial streams. We show that the two nonlinear techniques can be integrated in a single optimization and that the proposed algorithm has lower computational requirements than any other. The performance of TH-VP is analyzed and simulation results show that TH-VP outperforms conventional zero-forcing VP and approaches the performance of dirty paper coding.
2017
Chen, Rui; Moretti, Marco; Wang, Xiaodong
File in questo prodotto:
File Dimensione Formato  
manuscript.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 146.9 kB
Formato Adobe PDF
146.9 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/868599
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact