We report strong, amplitude modulated, commensurability oscillations in the magnetoresistance of short period, square, two-dimensional, lateral surface superlattices with symmetric potentials. The amplitude of the oscillations is strongly enhanced when one magnetic-flux quantum (h/e) passes through an integral number of cells of the superlattice. The temperature dependence of the strong oscillations agrees with the theory for commensurability oscillations in one-dimensional superlattices, but the smaller oscillations between these are more rapidly attenuated by increasing temperature. Although the structure we observe has the same flux periodicity as expected for the Landau-level substructure known as the Hofstadter butterfly, such substructure will not be resolved at the temperatures of measurement (1-10 K). We compare our data instead to a recent theoretical model which treats exactly this case, and find significant points of agreement.

Inverse flux quantum periodicity in the amplitudes of commensurability oscillations in two-dimensional lateral surface superlattices

PENNELLI, GIOVANNI;
2004-01-01

Abstract

We report strong, amplitude modulated, commensurability oscillations in the magnetoresistance of short period, square, two-dimensional, lateral surface superlattices with symmetric potentials. The amplitude of the oscillations is strongly enhanced when one magnetic-flux quantum (h/e) passes through an integral number of cells of the superlattice. The temperature dependence of the strong oscillations agrees with the theory for commensurability oscillations in one-dimensional superlattices, but the smaller oscillations between these are more rapidly attenuated by increasing temperature. Although the structure we observe has the same flux periodicity as expected for the Landau-level substructure known as the Hofstadter butterfly, such substructure will not be resolved at the temperatures of measurement (1-10 K). We compare our data instead to a recent theoretical model which treats exactly this case, and find significant points of agreement.
2004
Chowdhury, S; Long, Ar; Skuras, E; Davies, Jh; Lister, K; Pennelli, Giovanni; Stanley, Cr
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/88022
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact