Internal subnanosecond timescale motions are key for the function of proteins, and are coupled to the surrounding solvent environment. These fast fluctuations guide protein conformational changes, yet their role for protein stability, and for unfolding, remains elusive. Here, in analogy with the Lindemann criterion for the melting of solids, we demonstrate a common scaling of structural fluctuations of lysozyme protein embedded in different environments as the thermal unfolding transition is approached. By combining elastic incoherent neutron scattering and advanced molecular simulations, we show that, although different solvents modify the protein melting temperature, a unique dynamical regime is attained in proximity of thermal unfolding in all solvents that we tested. This solvation shell-independent dynamical regime arises from an equivalent sampling of the energy landscape at the respective melting temperatures. Thus, we propose that a threshold for the conformational entropy provided by structural fluctuations of proteins exists, beyond which thermal unfolding is triggered.

Critical structural fluctuations of proteins upon thermal unfolding challenge the Lindemann criterion

Capaccioli, Simone;PACHETTI, MARIA;
2017-01-01

Abstract

Internal subnanosecond timescale motions are key for the function of proteins, and are coupled to the surrounding solvent environment. These fast fluctuations guide protein conformational changes, yet their role for protein stability, and for unfolding, remains elusive. Here, in analogy with the Lindemann criterion for the melting of solids, we demonstrate a common scaling of structural fluctuations of lysozyme protein embedded in different environments as the thermal unfolding transition is approached. By combining elastic incoherent neutron scattering and advanced molecular simulations, we show that, although different solvents modify the protein melting temperature, a unique dynamical regime is attained in proximity of thermal unfolding in all solvents that we tested. This solvation shell-independent dynamical regime arises from an equivalent sampling of the energy landscape at the respective melting temperatures. Thus, we propose that a threshold for the conformational entropy provided by structural fluctuations of proteins exists, beyond which thermal unfolding is triggered.
2017
Katava, Marina; Stirnemann, Guillaume; Zanatta, Marco; Capaccioli, Simone; Pachetti, Maria; Ngai, K. L.; Sterpone, Fabio; Paciaroni, Alessandro
File in questo prodotto:
File Dimensione Formato  
PNAS-2017-Katava-9361-6.pdf

solo utenti autorizzati

Descrizione: versione finale editoriale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Katava_pnas.201707357SI.pdf

solo utenti autorizzati

Descrizione: supporting info file
Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.71 MB
Formato Adobe PDF
3.71 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
PNAS-paper_for_review_only.pdf

accesso aperto

Descrizione: versione post print
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 709.17 kB
Formato Adobe PDF
709.17 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/880625
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 32
social impact