We simulate the diffusion-driven dissolution or growth of a single-component (resp. two-component) drop embedded in a continuous phase of a binary (resp. single-component) liquid. Our theoretical approach follows a standard diffuse-interface model of partially miscible ternary liquid mixtures, which is based on a regular solution model assumption together with a Flory-Huggins and Cahn-Hilliard representation of the excess and nonlocal components of the Gibbs free energy of mixing. Based on 2D simulation results, we show that for a single-component drop embedded in a continuous phase of a binary liquid (which is highly miscible with either one component of the continuous phase but essentially immiscible with the other) the size of the drop can either shrink to zero or reach a stationary value, depending on whether the global composition of the mixture is within the one-phase region or the unstable range of the phase diagram. On the other hand, for an isolated two-component drop embedded in a continuous phase of a single-component liquid (which is essentially immiscible with either one component of the drop but miscible with the other) the size of the drop can either grow or shrink and, in particular, it will eventually go to zero if the global composition of the mixture is within the one-phase region; otherwise, for system locations in the unstable range the size of the drop tends to a constant value as the composition within the drop reaches its final equilibrium value.

Diffusion-Driven Dissolution or Growth of a Liquid Drop Embedded in a Continuous Phase of Another Liquid via Phase-Field Ternary Mixture Model

Lamorgese, Andrea
;
Mauri, Roberto
2017-01-01

Abstract

We simulate the diffusion-driven dissolution or growth of a single-component (resp. two-component) drop embedded in a continuous phase of a binary (resp. single-component) liquid. Our theoretical approach follows a standard diffuse-interface model of partially miscible ternary liquid mixtures, which is based on a regular solution model assumption together with a Flory-Huggins and Cahn-Hilliard representation of the excess and nonlocal components of the Gibbs free energy of mixing. Based on 2D simulation results, we show that for a single-component drop embedded in a continuous phase of a binary liquid (which is highly miscible with either one component of the continuous phase but essentially immiscible with the other) the size of the drop can either shrink to zero or reach a stationary value, depending on whether the global composition of the mixture is within the one-phase region or the unstable range of the phase diagram. On the other hand, for an isolated two-component drop embedded in a continuous phase of a single-component liquid (which is essentially immiscible with either one component of the drop but miscible with the other) the size of the drop can either grow or shrink and, in particular, it will eventually go to zero if the global composition of the mixture is within the one-phase region; otherwise, for system locations in the unstable range the size of the drop tends to a constant value as the composition within the drop reaches its final equilibrium value.
2017
Lamorgese, Andrea; Mauri, Roberto
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/880876
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact