In the realm of wearable augmented reality (AR) systems, stereoscopic video see-through displays raise issues related to the user's perception of the three-dimensional space. This paper seeks to put forward few considerations regarding the perceptual artefacts common to standard stereoscopic video see-through displays with fixed camera convergence. Among the possible perceptual artefacts, the most significant one relates to diplopia arising from reduced stereo overlaps and too large screen disparities. Two state-of-the-art solutions are reviewed. The first one suggests a dynamic change, via software, of the virtual camera convergence, whereas the second one suggests a matched hardware/software solution based on a series of predefined focus/vergence configurations. Potentialities and limits of both the solutions are outlined so as to provide the AR community, a yardstick for developing new stereoscopic video see-through systems suitable for different working distances.

The role of camera convergence in stereoscopic video see-through augmented reality displays

Cutolo, Fabrizio
Primo
;
Ferrari, Vincenzo
2018-01-01

Abstract

In the realm of wearable augmented reality (AR) systems, stereoscopic video see-through displays raise issues related to the user's perception of the three-dimensional space. This paper seeks to put forward few considerations regarding the perceptual artefacts common to standard stereoscopic video see-through displays with fixed camera convergence. Among the possible perceptual artefacts, the most significant one relates to diplopia arising from reduced stereo overlaps and too large screen disparities. Two state-of-the-art solutions are reviewed. The first one suggests a dynamic change, via software, of the virtual camera convergence, whereas the second one suggests a matched hardware/software solution based on a series of predefined focus/vergence configurations. Potentialities and limits of both the solutions are outlined so as to provide the AR community, a yardstick for developing new stereoscopic video see-through systems suitable for different working distances.
2018
Cutolo, Fabrizio; Ferrari, Vincenzo
File in questo prodotto:
File Dimensione Formato  
IJACSACutoloetal.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/930295
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact