Loss of algal canopies can result in a shift towards a turf-dominated state, where variability in species life-history traits can determine new mechanisms of feedback, and influence the degraded system under variable regimes of disturbance. By focusing on rockpools dominated by Cystoseira brachycarpa, we tested the hypothesis that the alga Dictyopteris polypodioides could take advantage of extreme regimes of disturbance related to storms, and outcompete other turfs through a distinctive combination of life traits. Replacement of the canopy was initially driven by a mix of taxon-specific life-traits and resulting assemblages were susceptible to intense events of disturbance. Subsequently, D. polypodioides dominated removal quadrats, favored by density-dependent abilities to intercept more light and reach larger size than the rest of turf. These new positive feedbacks may contribute to maintain the modified state of the system and influence its ability to withstand extreme abiotic conditions.

Ecological feedback mechanisms and variable disturbance regimes: the uncertain future of Mediterranean macroalgal forests

Maggi E
Primo
;
Benedetti-Cecchi L
Ultimo
2018-01-01

Abstract

Loss of algal canopies can result in a shift towards a turf-dominated state, where variability in species life-history traits can determine new mechanisms of feedback, and influence the degraded system under variable regimes of disturbance. By focusing on rockpools dominated by Cystoseira brachycarpa, we tested the hypothesis that the alga Dictyopteris polypodioides could take advantage of extreme regimes of disturbance related to storms, and outcompete other turfs through a distinctive combination of life traits. Replacement of the canopy was initially driven by a mix of taxon-specific life-traits and resulting assemblages were susceptible to intense events of disturbance. Subsequently, D. polypodioides dominated removal quadrats, favored by density-dependent abilities to intercept more light and reach larger size than the rest of turf. These new positive feedbacks may contribute to maintain the modified state of the system and influence its ability to withstand extreme abiotic conditions.
2018
Maggi, E; Puccinelli, E; Benedetti-Cecchi, L
File in questo prodotto:
File Dimensione Formato  
Maggi&al2018MERE_post print.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 572.81 kB
Formato Adobe PDF
572.81 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/931459
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact