We present TEOBResumS, a new effective-one-body (EOB) waveform model for nonprecessing (spin-aligned) and tidally interacting compact binaries.Spin-orbit and spin-spin effects are blended together by making use of the concept of centrifugal EOB radius. The point-mass sector through merger and ringdown is informed by numerical relativity (NR) simulations of binary black holes (BBH) computed with the SpEC and BAM codes. An improved, NR-based phenomenological description of the postmerger waveform is developed.The tidal sector of TEOBResumS describes the dynamics of neutron star binaries up to merger and incorporates a resummed attractive potential motivated by recent advances in the post-Newtonian and gravitational self-force description of relativistic tidal interactions. Equation-of-state dependent self-spin interactions (monopole-quadrupole effects) are incorporated in the model using leading-order post-Newtonian results in a new expression of the centrifugal radius. TEOBResumS is compared to 135 SpEC and 19 BAM BBH waveforms. The maximum unfaithfulness to SpEC data $\barF$ -- at design Advanced-LIGO sensitivity and evaluated with total mass $M$ varying between $10M_\odot \leq M \leq 200 M_\odot$ --is always below $2.5 \times 10^-3$ except for a single outlier that grazes the $7.1 \times 10^-3$ level. When compared to BAM data, $\barF$ is smaller than $0.01$ except for a single outlier in one of the corners of the NR-covered parameter space, that reaches the $0.052$ level.TEOBResumS is also compatible, up to merger, to high end NR waveforms from binary neutron stars with spin effects and reduced initial eccentricity computed with the BAM and THC codes. The model is designed to generate accurate templates for the analysis of LIGO-Virgo data through merger and ringdown. We demonstrate its use by analyzing the publicly available data for GW150914.

Time-domain effective-one-body gravitational waveforms for coalescing compact binaries with nonprecessing spins, tides, and self-spin effects

Del Pozzo, Walter;Carullo, Gregorio;
2018-01-01

Abstract

We present TEOBResumS, a new effective-one-body (EOB) waveform model for nonprecessing (spin-aligned) and tidally interacting compact binaries.Spin-orbit and spin-spin effects are blended together by making use of the concept of centrifugal EOB radius. The point-mass sector through merger and ringdown is informed by numerical relativity (NR) simulations of binary black holes (BBH) computed with the SpEC and BAM codes. An improved, NR-based phenomenological description of the postmerger waveform is developed.The tidal sector of TEOBResumS describes the dynamics of neutron star binaries up to merger and incorporates a resummed attractive potential motivated by recent advances in the post-Newtonian and gravitational self-force description of relativistic tidal interactions. Equation-of-state dependent self-spin interactions (monopole-quadrupole effects) are incorporated in the model using leading-order post-Newtonian results in a new expression of the centrifugal radius. TEOBResumS is compared to 135 SpEC and 19 BAM BBH waveforms. The maximum unfaithfulness to SpEC data $\barF$ -- at design Advanced-LIGO sensitivity and evaluated with total mass $M$ varying between $10M_\odot \leq M \leq 200 M_\odot$ --is always below $2.5 \times 10^-3$ except for a single outlier that grazes the $7.1 \times 10^-3$ level. When compared to BAM data, $\barF$ is smaller than $0.01$ except for a single outlier in one of the corners of the NR-covered parameter space, that reaches the $0.052$ level.TEOBResumS is also compatible, up to merger, to high end NR waveforms from binary neutron stars with spin effects and reduced initial eccentricity computed with the BAM and THC codes. The model is designed to generate accurate templates for the analysis of LIGO-Virgo data through merger and ringdown. We demonstrate its use by analyzing the publicly available data for GW150914.
2018
Nagar, Alessandro; Bernuzzi, Sebastiano; Del Pozzo, Walter; Riemenschneider, Gunnar; Akcay, Sarp; Carullo, Gregorio; Fleig, Philipp; Babak, Stanislav; Tsang, Ka Wa; Colleoni, Marta; Messina, Francesco; Pratten, Geraint; Radice, David; Rettegno, Piero; Agathos, Michalis; Fauchon-Jones, Edward; Hannam, Mark; Husa, Sascha; Dietrich, Tim; Cerdá-Duran, Pablo; Font, José A.; Pannarale, Francesco; Schmidt, Patricia; Damour, Thibault
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/937698
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 160
  • ???jsp.display-item.citation.isi??? 144
social impact